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Introduction.
In [1] I discussed among other things the one-dimensional multi-group diffusion

equations in a particular simple (but often used) form. I showed that the associated
eigenvalues were positive real. This note contains supplementary remarks to the
proof, and also the details of an earlier proof (referred to in [1]) of the same fact
for a much used discrete approximation to these equations (actually providing an
alternative proof of the above by going to the limit).

Remarks to [1, pages 20–23].
We discuss the system of differential equations

− d

dx
(d1(x)

d

dx
φ1(x)) + a1(x)φ1(x) =λσ1(x)φn(x)

− d

dx
(dj(x)

d

dx
φj(x)) + aj(x)φj(x) =σj(x)φj−1(x), (2 ≤ j ≤ n)

valid in a certain finite interval, with suitable boundary conditions (for these, and
the conditions on the coefficients, see [1]. We shall here assume that the coefficients
are positive, and that the diffusion coefficients dj have a positive lower bound).

The possibility that λ = |λ|eiθ with 0 < θ < 2π is investigated. The correspond-
ing set of eigenfunctions are φj(x) = |φj(x)| exp(iψj(x)).

Taking the real part of the differential equations just means replacing φj(x)
with |φj(x)| cos(ψj(x)) in equations 2, 3, . . . , n, while the source term in equation 1
becomes |λ|σ1(x)|φn(x)| cos(ψn(x) + θ).

Now, if, for some j, |φj(x)| cos(ψj(x)) ≡ 0, the same is true for all of the func-
tions with greater index. However, it may happen that |φn(x)| cos(ψn(x) + θ) is
not identically equal to 0 (then θ 6= π). But, expanding the cosine, we see that
sin(ψn(x)) is not identically equal to 0, and so, if we alter all ψk(x) by adding
an arbitrary common constant α ∈ (0, π), none of the functions |φj(x)| cos(ψj(x))
can be identically equal to zero. Consider this done. For simplicity, the functions
|φk(x)| cos(ψk(x)) are now just called fk(x).

For each k we can then divide the reactor interval into a minimal number of
subintervals inside each of which fk(x) (if not identically zero) has constant sign
and so also has an extremum away from zero (actually just a point where |fk(x)| is
maximal). In such a point the term − d

dx (dk(x) d
dxfk(x)), if non-zero, has the same

sign as fk(x), and so also fk−1(x) has this sign, thus giving an injection of the set
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of subintervals of fk into that of fk−1. In particular, we get an injection of the set
of subintervals of |φn(x)| cos(ψn(x)) into that of |φn(x)| cos(ψn(x) + θ).

This fact is used in several ways in the remaining part of the proof given in [1].
First it is used to show that because of the positive lower bounds for the functions

dk(x), none of the functions fkcan have an infinite number of subintervals. Actually,
it was shown that otherwise the zeros of cos(ψn(x)) would have a limit point y
belonging to the closed reactor interval. But then this would be true (with the same
value of y) for cos(ψn(x) +α) with arbitrary phase α, implying cos(ψn(y) +α) = 0
for every α, an impossibility.

It then follows that we have the same number of subintervals for all k, and that,
for instance, the signs of all fk(x) in the leftmost subinterval are the same. This
is true for all values of the phase α, except possibly for the few values we have
excluded. But then the two functions |φn(x)| cos(ψn(x)) and |φn(x)| cos(ψn(x) +
θ) also have the same sign in this subinterval. This easily is shown to give a
contradiction for suitable values of α, q.e.d.

The difference equations.
They have the form

(D1 − L1 − U1)φ1
=λF1φn

(Dj − Lj − Uj)φj
=Fjφj−1

, (2 ≤ j ≤ n)

where the matrices all have the same order m. For 1 ≤ j ≤ n: The diagonal
matrices Dj all have positive elements, and the diagonal matrices Fj have non-
negative elements. The matrices Lj are sub-diagonal, i.e. the element lj,r,s in
row r and column s is different from 0, in fact non-negative, only if r − s = 1.
Similarly, the matrices Uj are non-negative super-diagonal matrices. The matrices
Mj = Dj −Lj −Uj are irreducible, their row sums are non-negative (positive for at
least one row). These properties together ensure that each matrix Mj is invertible.
Our equations can then be written

(
1∏

j=n

M−1
j Fj)φn

=
1
λ
φ

n
.

This reformulation is of interest for the following, because it shows that the set
of eigenvalues depends continuously on the elements of the matrices Fj , simply
because the set of solutions to an algebraic equation depends continuously on its
coefficients. The problem is that the diagonal matrices Fj may have zero elements
(in the diagonal). But the following discussion is much simplified if all their diagonal
elements can be assumed to be positive (which we shall do). The original problem
is then obtained by taking the limit, which, in the worst case, can result in a zero
eigenvalue, and this can be ruled out since the Mj are invertible.

Since we can now assume the matrices Fj invertible, the original equations can
be rewritten as

(
n∏

j=1

F−1
j Mj)φn

= λφ
n
.

The next step is to show that each matrix Mj can be written as a product of
bidiagonal matrices. Actually (in obvious notation)

D − L− U = (D′ − L′)(I − U ′)
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gives
L =L′

U =D′U ′

D =D′ + L′U ′,

from which the elements of L′, D′, and U ′ can be determined. The details: We
have

d′1,1 = d1,1

and, for 1 ≤ j ≤ n− 1,

u′j,j+1 =
uj,j+1

d′j,j

d′j+1,j+1 =dj+1,j+1 − lj+1,ju
′
j,j+1.

We see that d′j+1,j+1d
′
j,j equals the 2× 2 principal subdeterminant of D−L−U

corresponding to rows and columns j and j + 1. It follows from our assumptions
that this quantity (and so also, by induction, d′j+1,j+1) is positive. This shows that
the elements of L′ and U ′ are non-negative.

Our original problem has now been transformed to examining the eigenvalues of
a matrixproduct

B =
3n∏

j=1

B(j),

where the matrices B(j) are of two types. Either, for all r, s,

b(j)r,s = 0 unless r − s ∈ {0, 1}

or, for all r, s,
b(j)r,s = 0 unless s− r ∈ {0, 1}.

For all j, r, s,
b(j)r,r >0

b(j)r,s ≤0 for |r − s| = 1.

We shall show that the principal subdeterminants of B are positive. To do this,
we need an expression for the subdeterminants of a matrixproduct. The formula is
well known, but for the reader’s convenience I shall give a proof anyway.

Let A =
∏q

j=1A
(j) be a product ofm×mmatrices. We wish to find an expression

for a subdeterminant of order p < m. Its row and column numbers are given by
vectors r and s, respectively. It suffices to consider the case q = 2.

The usual formula for the determinant of a matrix gives in the present case

|Ar,s| =
∑

σ

sign(σ)
p∏

t=1

art,σ(st),

where the summation is over all permutations of the p chosen column numbers
relative to their original ordering in the vector s.
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Introducing the factors, we find

|Ar,s| =
∑

σ

sign(σ)
p∏

t=1

m∑
ut=1

a(1)
rt,ut

a
(2)
ut,σ(st)

=
∑

σ

sign(σ)
m∑

u1=1

· · ·
m∑

up=1

p∏
t=1

a(1)
rt,ut

a
(2)
ut,σ(st)

=
m∑

u1=1

· · ·
m∑

up=1

p∏
t=1

a(1)
rt,ut

∑
σ

sign(σ)
p∏

t=1

a
(2)
ut,σ(st)

=
m∑

u1=1

· · ·
m∑

up=1

p∏
t=1

a(1)
rt,ut

|A(2)
u,s|.

It follows from the properties of the determinant that only terms with all ut

different give a contribution. Collecting the terms where the ut are permutations
of the same numbers, we find that

|Ar,s| =
∑

v

|A(1)
r,v||A(2)

v,s|,

where the summation is over all subsets, consisting of p numbers, chosen from the
set of integers 1, 2, . . . ,m. Since the vectors v are just meant to indicate unordered
sets, we shall assume that the coordinates of these vectors are given in their natural
order. The same goes for the vectors r and s.

Applying these results on the matrix product B, we see that the determinant of
Br,s is a sum of products

|B(1)
r,v1

||B(2)
v1,v2

| . . . |B(3n)
v3n−1,s|.

We shall need the sign of a subdeterminant of order p of a bilinear matrix. For
definiteness we consider a matrix of the form B = D − L. Then

|Br,s| =
∑

σ

sign(σ)
p∏

t=1

brt,σ(st).

Here, as noted above, we can assume

r1 <r2 < · · · < rp

s1 <s2 < · · · < sp.

We only get a contribution from those terms where, for all t, we have σ(st)−rt ∈
{0,−1}. Assume that we had a contribution from a permutation σ different from
the identical one. Then, for some t, we would have

σ(st+1) < σ(st) ≤ rt ≤ rt+1 − 1,

and so the factor with index t+ 1 would be zero, a contradiction.
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The sign of factor number t is (−1)(rt−st), if non-zero. Thus the sign of the
subdeterminant, if non-zero, becomes (−1)

Pp
t=1(rt−st).

Going back to the matrix product B, we see that the sign of a non-vanishing
term becomes

(−1)
Pp

t=1(rt−v1,t)+
Pp

t=1(v1,t−v2,t)+···+
Pp

t=1(v3n−1,t−st),

which always equals (−1)
Pp

t=1(rt−st).
In particular, the subdeterminants |Br,r| are always positive, ensuring that B

does not have any negative real eigenvalues.
To show that B has only positive real eigenvalues we must show that B does not

have any non-real eigenvalues λ. Since any power of B has a product representation
of the same form as B has, it suffices to show that a matrix of this form cannot
have an eigenvalue with negative real part.

Assume that B has the eigenvalue −α + iβ with α > 0 and β 6= 0. Then
|(B+αI)2+β2I| = 0, i.e. the matrix (B+αI)2 has a negative eigenvalue. To exclude
this possibility it suffices to show that the principal subdeterminants |(B + αI)2r,r|
are positive.

In the usual notation

|(B + αI)2r,r| =
∑

v

|(B + αI)r,v||(B + αI)v,r|.

Here |(B + αI)r,v| is a polynomial in α whose coefficients are sums of subdeter-
minants |(B + αI)r′,v′ | whose row and column numbers are obtained from those
of r and v, respectively, by disregarding the same set of numbers (correspond-
ing to diagonal elements in B), and so such a subdeterminant still has the sign
(−1)

Pp
t=1(rt−vt). But |(B + αI)v,r| has the same sign, so that all contributions to

|(B + αI)2r,r| are positive, q.e.d.

Remark.
In general, the product of more than two positive definite matrices does not have

all eigenvalues positive. The result above shows that it does, if the matrices are
tridiagonal.
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