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Introduction.
I worked from 1959 to 1985 as a reactor physicist at the research establishment

Risø. As part of my work I devised methods for numerical solution of various
equations. In particular two problem areas were of interest: rootfinding and solution
of the neutron diffusion equation.

Rootfinding.
The problem to solve is the following:
Let the real function f be calculable in the closed interval I = [a, b], and assume

that f(a) and f(b) have opposite signs. Find two points c and d in I, such that
f(c) and f(d) have opposite signs, and |c− d| < ε, where ε is a preassigned positive
real number.

In the sixties I constructed a lot of algorithms to solve this problem. The first
really successful one was HYP, described in [1]. At that time the usual algorithms
used polynomial approximations to f when estimating the root. But as soon as
the degree of the approximating polynomial is greater than 1, the formulae become
complicated. I found that simpler formulae resulted if one let the approximating
rational function have real singularities, and the practical difficulties connected with
avoiding singularities in the interval [a, b] were surmountable. Actually, [1] is my
only success when it comes to number of quotations.

In [2] I gave a general account of methods using rational approximation to f
and described (20 years after the first version appeared!) a particular (and very
complicated) high order method HYPAR which had proved itself close to optimal
for a particular problem in reactor physics.

In 1965 I also described (in an internal report) a method where, in place of the
function f , one considered the inverse function f−1. Here the problem reduces to
finding the value assumed at the particular point 0. The formulae are simpler, even
for arbitrary degree of the approximating polynomial. However, I did not succeed
in constructing a competitive algorithm using this method, so I did not publish it.

I later found that there was nothing new in the mathematics connected with
these methods. One sometimes forgets that before the advent of programmable
calculating machines one was even more dependent on efficient numerical methods.

The neutron diffusion equation.
The density n of neutrons in a nuclear reactor is governed by the neutron trans-

port equation. A reasonable approximation is obtained by simplifying the depen-
dence of n on the direction of flight. In this way we arrive at the neutron diffusion
equation for the neutron flux φ. To simplify the dependence of φ on energy we
divide the energy interval into a finite number of energy groups. For each group
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the dependence on the properties (the neutron cross sections) of the material is
averaged over energy.

It turns out that we get a system of coupled elliptic partial differential equations
for the group fluxes. Actually we have an eigenvalue problem, in which the fission
terms are provided with a factor λ, the eigenvalue determining the distance of the
reactor from criticality. There are usually infinitely many eigenvalues, but the one
we are interested in is the smallest positive eigenvalue. When trying to increase
the speed of the calculations one often assumes that all eigenvalues are positive.
I proved already in 1960 (see [3] and the supplementary notes in [6]) that this
assumption is not always justified. However, in some cases it is, and one must
assume that in most practical cases the eigenvalues cluster around the positive part
of the real axis so that the acceleration methods work satisfactorily.

These remarks are relevant when using the methods of solution developed during
the fifties, where the number of neutron groups was rather small (the two group
approximation was widely used). The iterations needed to arrive from an initial
guess (usually a spacewise constant flux) to the flux corresponding to the smallest
positive eigenvalue λ were called outer iterations.

But each outer iteration required that one should solve each group equation
for the neutron energy group to which it corresponded, considering the contribu-
tions from the other groups as source terms. This was done iteratively, the inner
iterations.

Later on, it was found by numerical experimentation that one could simplify
this iterative method considerably, with a corresponding gain in speed. One can
say that the outer iteration was simplified by performing only one inner iteration
in each group. Apparently the success of the method depended critically on the
way in which a new guess for the eigenvalue was arrived at at the end of an outer
iteration. The one actually used consisted in simply adding all equations and solving
the resulting linear equation for λ.

I showed in [4] that this method did not always work. However, it was difficult
to find cases of failure for the method, and these cases were rather exotic. I showed
in [5], that a different way of calculating λ actually could be proven to work in a
number of cases, for instance in one group theory. But a simple iterative method
of this type, working in all cases, seemed to be non-existing.
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