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Abstract. A number of examples of non-uniform distribution modulo one of geo-

metric sequences are given.

Introduction

For all real numbers x we define the fractional part fr(x) as x − [x]. For vari-
ous real numbers α ∈ (1,∞) we study the dependence of the sequence (fr(λαn) |
n = 0, 1, . . . ) on λ. We are particularly interested in examples of non-uniform
distribution of the members of such a sequemce.

For any α > 1 we can obtain a non-uniform distribution

We choose a natural number m such that m
√

m + 1 < α.
Next we define the sequence of natural numbers (gp | p = 0, 1, . . . ) recursively:
The first number, g0, is arbitrary.
Then, gp+1 = 1 + [αmgp].
We define, for p = 0, 1, . . . , the closed interval Ip = [gp/αmp, (gp + 1/(αm −

1))/αmp].
Evidently, for all p, Ip+1 ⊂ Ip.
We put {λ} = ∩∞p=0Ip.
Then, for all p, gp ≤ λαmp ≤ gp + 1/(αm − 1), i.e. fr(λαmp) ≤ 1/(αm − 1).
Thus, for N → ∞, the fraction of the numbers λαn (n = 0, 1, . . . , N) having

fractional parts not greater than 1/(αm−1) is not less than 1/m, a fact incompatible
with a uniform distribution modulo one, since 1/(αm − 1) < 1/m.

Distributions contained in subintervals

A special kind of non-uniform distribution modulo one is a distribution contained
in a subinterval, typically [0, 1

2 ) is chosen.
I read Mahler’s interesting paper [1], treating the particular case α = 3/2. He

shows that there can be at most a countable number of values of λ, for which this
is possible, and he also finds a number of rather severe conditions such a λ must
satisfy. No solution is found, however, and it appears improbable, on the basis of
the results of extensive numerical experiments, that there is one.

Mahler suggests that one should consider other values of α, for instance rational.
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Obviously, the problem is to construct a sequence (gn | n = 0, 1, . . . ) of natural
numbers such that the intersection ∩∞n=0[gn/(αn), (gn + 1

2 )/(αn)) is non-empty.
For α ≥ 3 we can obtain a nested sequence of intervals simply by choosing g0

arbitrary and gn+1 = −[−αgn] for n = 0, 1, . . . , and so there is a λ with the property
looked for.

To carry out this argument we use that any closed real interval of length one
contains an integer. We can refine the argument if the endpoints of the interval are
rational numbers, which we can assume have a common denominator q > 1. Then
the interval need only have the length 1− 1/q to with certainty contain an integer.
We can then show that also to values of α of the form 3−2/m, where m = 3, 4, . . . ,
there exist values of λ for which 0 ≤ fr(λαn) < 1

2 for n = 0, 1, . . . .
The details: The integer gn+1 should belong to the closed interval [αgn, αgn +

(α − 1) 1
2 ], where (α − 1) 1

2 = 1 − 1/m. The argument works also for m = 2, but
gives the trivial result that λ is an integer.

It is easy to give examples of numbers α, for which solution is impossible. Take,
for instance, the number (1 +

√
5)/2. It is a root of the equation α2 = α + 1. The

fractional parts rn = fr(λαn) must satisfy the recurrence rn+2 = rn+1 + rn, since
the right hand side is a number in [0, 1) and so does not differ from a number in
[0, 1

2 ) by a non-zero integer. But then rn is a linear combination of the two numbers
((1 ±

√
5)/2)n. However, αn cannot occur with a non-zero coefficient, since rn is

bounded, and the sign of ((1 −
√

5)/2)n alternates, so that rn cannot belong to
[0, 1

2 ) for all n.
I communicated these results (and a number of others) to Kurt Mahler in 1969.
I think that the most interesting case is the one where α is the square root of

one of the numbers 3, 5, 6, 7, 8.
In general, if α is the square root of a positive integer m > 2, it appears natural

to use the expansions of both λ and λ
√

m in powers of m−1,

(1) λ = g0 +
∞∑

j=1

gj m−j ,

and

(2) λ
√

m = h0 +
∞∑

k=1

hk m−k.

Here g0 and h0 are arbitrary integers, while the other coefficients in general
should be integers belonging to the interval [0,m−1]. However, since both fr(λmn)
and fr(λ

√
m mn) must belong to the interval [0, 1

2 ) for n = 0, 1, . . . , these coefficients
are restricted to the interval [0, [(m− 1)/2]].

We see that there is an important difference between even and odd values of
m: For m even the highest value of a coefficient is m/2 − 1, so that actually the
mentioned fractional parts are at most equal to 1

2 (m − 2)/(m − 1). For m odd,
the highest permitted value of a coefficient is (m − 1)/2, and we do not allow a
representation with all coefficients of sufficiently high index assuming this maximal
value. Unfortunately, I have not been able to rule out that possibility, so that, in
fact, I have only obtained 0 < fr(λαn) ≤ 1

2 for n = 0, 1, . . . , when α =
√

m and
m ∈ {3, 5, 7}.
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We must ensure that the two expansions (1) and (2) are compatible, i.e. we must
have

(3) h0 +
∞∑

k=1

hk m−k =

g0 +
∞∑

j=1

gj m−j

√m.

This makes us consider the general situation where two expansions like the right
hand sides of (1) and (2) are given, and we wish to combine them to obtain an
arbitrary real number. For instance, if m is odd, an arbitrary number can be
obtained by addition. Actually, an integral coefficient in the interval [0,m− 1] can
be obtained, usually in several ways, as the sum of two integers in the interval
[0, (m− 1)/2] (the corresponding statement is not true for m even).

For m odd, I shall show that an arbitrary real number (and thus
√

m) can also
be obtained as the ratio between two expansions of the type occurring in the right
hand sides of (1) and (2). It suffices to show that for an arbitrary real number
A ∈ (1,m) it is possible to find coefficients such that

(4) h0 +
∞∑

k=1

hk m−k =

g0 +
∞∑

j=1

gj m−j

 A.

To do this, we start by finding integers g0, g1, and h0 such that

(5) −1
2

< h0 − (g0 + g1/m)A < A/(2m).

First, g0 is chosen as an arbitrary positive integer. Next, h0 is defined (uniquely)
as an integer such that

−1
2

< h0 − g0 A ≤ 1
2
.

Then g1 is chosen as the smallest integer in [0, (m− 1)/2] such that

h0 − (g0 + g1/m)A < A/(2m).

If this were not possible, we would have

m− 1
2

A/m ≤ 1
2
−A/(2m),

i.e. A ≤ 1, which is not true.
We must still check if this choice of g1 would make

h0 − (g0 + g1/m)A ≤ −1
2
.

If this were the case, the minimality of g1 would imply that

A/m ≥ 1
2

+ A/(2m),
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i.e. A ≥ m, which is not true either.
This was step 0 of the solution of (4).
To describe step n, we first introduce an abbreviation: Define

(6) Sn = h0 +
n∑

k=1

hk m−k −

g0 +
n+1∑
j=1

gj m−j

A.

In step n we assume that we have obtained

(7) −1
2

m−n+1 < Sn−1 <
A

2mn
.

We shall then choose the integers hn and gn+1 in [0, (m − 1)/2] such that we get
the inequalities (7) with n− 1 replaced by n, so that the argument can continue.

Thus Sn−1m
n−1 belongs to the interval (− 1

2 , A/(2m)), and we shall show that
for each point t in this interval it is possible to find hn and gn+1 such that t +
hn/m − gn+1 A/m2 belongs to the interval (−1/(2m), A/(2m2)). But this could
also be expressed in another way: We form the union of the tranlations of the
interval (−1/(2m), A/(2m2)) by all numbers −hn/m + gn+1 A/m2 and show that
this union contains the interval (− 1

2 , A/(2m)).
Let us first keep hn fixed and consider the union

(8)
(m−1)/2⋃
gn+1=0

(
1
m

(
−hn −

1
2

+
gn+1

m
A

)
,

1
m

(
−hn +

A

m

(
1
2

+ gn+1

)))
.

The intervals overlap, since A < m, and so the union in (8) equals

(9)
(

1
m

(
−hn −

1
2

)
,

1
m

(
−hn +

A

2

))
.

Finally we form

(10)
(m−1)/2⋃

hn=0

(
1
m

(
−hn −

1
2

)
,

1
m

(
−hn +

A

2

))
.

Again the intervals overlap, this time because A > 1, and the union in (10) equals
(− 1

2 , A
2m ), as expected, and the proof by induction is concluded.

In the case where m is even, A must be restricted somewhat. We require

(11)
m

m− 2
< A < m− 2.

Now we can use a slightly modified method to prove that a solution exists (note
that m > 4, so that (11) has meaning).

We showed earlier that the fractional parts we are interested in, now belong to
the interval [0, σ], where we have defined

(12) σ =
m− 2
2m− 2

,
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instead of the interval [0, 1
2 ).

The changes to the arguments used in the case where m was odd, largely consist
in replacing 1

2 by σ. But I shall give the details:
(5) is replaced by

(5’) −σ < h0 − (g0 + g1/m)A < σ A/m.

We start by having g0 and h0 satisfy

−σ < h0 − g0 A ≤ 1− σ.

Next g1 is chosen as the smallest integer in [0, m
2 − 1] for which

h0 − (g0 + g1/m)A < σ A/m.

If this were not possible, we would have(m

2
− 1
) A

m
≤ 1− σ − σ

A

m
,

which can be simplified to A
m ≤ 1

m−2 , contradicting (11).
If this choice of g1 makes

h0 − (g0 + g1/m)A ≤ −σ,

we must have
A

m
≥ σ + σ

A

m
,

implying A ≥ m− 2, again contradicting (11).
In step n there are the following changes:
The inequalities (7) become

(7’) −σ m−n+1 < Sn−1 < σ
A

mn
.

(8) is changed to

(8’)

m
2 −1⋃

gn+1=0

(
1
m

(
−hn − σ +

gn+1

m
A
)

,
1
m

(
−hn +

A

m
(σ + gn+1)

))
.

Overlap requires A
m − σ < A

mσ, i.e. A < m− 2, satisfied according to (11).
(9) becomes

(9’)
(

1
m

(−hn − σ) ,
1
m

(−hn + Aσ)
)

,

so that (10) is replaced by

(10’)

m
2 −1⋃

hn=0

(
1
m

(−hn − σ) ,
1
m

(−hn + Aσ)
)

.
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Overlap requires 1− σ < Aσ, i.e. A > m
m−2 , satisfied according to (11). Thus (10’)

equals (−σ, σ A
m ), as it should.

We finally note that since m > 4, the number A =
√

m satisfies (11), which
concludes the proof.

If α =
√

2, obviously we cannot have 0 ≤ fr(λαn) < 1
2 for n = 0, 1, . . . for any

real λ.
We can, however, obtain 0 ≤ fr(λαn) < 2

3 for n = 0, 1, . . . .
To prove this, we use a method somewhat resembling the one used above for

the other square roots. The problem is here to show that any real number in (1, 2)
(and so also

√
2) can be represented as the ratio between two expansions

(13) h0 +
∑
k∈S

2−k

and

(14) g0 +
∑
j∈T

2−j ,

where S and T are subsets of N, while h0 and g0 are positive integers. We further
require that neither S nor T contains consecutive integers, and that if one of them
contains a number N , it does not also contain all numbers greater than N and
having the same parity. Then we are sure that, for instance,

0 ≤ fr

(
2n
∑
k∈S

2−k

)
<

2
3

for n = 0, 1, . . . .
For any number A ∈ (1, 2) we must solve an equation, similar to (4),

(15) h0 +
∑
k∈S

2−k = A

g0 +
∑
j∈T

2−j

 .

As above, we solve for the coefficients recursively.
In step n we assume given that we have found finite subsets Sn−1 ⊂ S and

Tn−1 ⊂ T with kn−1 the maximal member of Sn−1 and jn−1 the maximal member
of Tn−1, such that

(16) 0 < h0 +
∑

k∈Sn−1

2−k −A

g0 +
∑

j∈Tn−1

2−j

 <
1
3
2−kn−1 .

(I shall disregard the (real) possibility that the leftmost inequality becomes an
equality. In fact, the problem would then be solved with A a rational number). In
(16) it is understood that S0 and T0 are empty, while k0 and j0 equal 0. Thus,
for n = 1 we are supposed to have found the integers g0 and h0 such that 0 <
h0 −Ag0 < 1

3 , which is always possible. For instance we could, for A =
√

2, choose
h0 = 3 and g0 = 2.
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In step n we now determine the set Tn \ Tn−1. We shall do this such that the
expression

(17) h0 +
∑

k∈Sn−1

2−k −A

g0 +
∑
j∈Tn

2−j


becomes negative but with minimal numerical value. But then A

∑
j∈Tn\Tn−1

2−j

need not be greater than 1
32−kn−1 . And since A > 1, no member of Tn \ Tn−1 is

smaller than kn−1 + 2. In particular, jn ≥ kn−1 + 2. We also see that the value
of the expression (17) cannot be less than −A

3 2−jn since, otherwise, its numerical
value could be decreased, if we removed jn from Tn and instead inserted some finite
subset of {jn + 1, jn + 3, . . . }.

Next we determine the set Sn \ Sn−1 such that

h0 +
∑

k∈Sn

2−k −A

g0 +
∑
j∈Tn

2−j


becomes minimally positive. But then

∑
k∈Sn\Sn−1

2−k need not be greater than
A
3 2−jn . Since A < 2, this means that no member of Sn\Sn−1 is smaller than jn +1,
and so not smaller than kn−1 + 3, so that Tn is permissible. We also see that no
member of Tn+1 \ Tn is smaller than kn + 2, and so not smaller than jn + 3, which
shows that also Tn+1 is permissible. So is, of course, T1. This concludes the proof.

One can prove that λ can be determined for some algebraic numbers satisfying
various conditions. Suppose, for instance, that α is a Pisot number with the positive
number β as its numerically largest conjugate. Then we can choose λ = (α− 1)αm

with m a sufficiently large positive number and get
fr(λαn) = (1 − β)βm+n +

∑
j(1 − βj)βm+n

j , where the sum gives the contribution
from the remaining conjugates, which becomes arbitrarily small compared to the
contribution from β when m + n increases, and so we can obtain fr(λαn) ∈ (0, 1

2 )
for all integers n ≥ 0.

This paper was slightly modified on 24 August 2014.
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