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Abstract. I discuss a norm-derived metric of the plane, corresponding to the unit

circle (i.e. the set of points with distance 1 from the origin) being a parallelogram.

In this case it is trivially possible to four-colour the plane in such a way that two

points with distance 1 always receive different colours. However, there are an infinite

number of essentially different colourations, and a classification of these is given.

Unit distance graphs

A unit distance graph G relative to a given metric d of the plane is a collection
V of points in the plane together with a collection E of 2-subsets of V satisfying

{P,Q} ∈ E =⇒ d(P,Q) = 1.

An edge in G is a straight line connecting two points P and Q where {P,Q} ∈ E.

Norm-based metrics

It is well known (see for instance [2] and its references) that in such a metric the
chromatic number of a unit distance graph G in the plane is finite (less than 8),
and so, according to a theorem by Erdős and de Bruijn (see [1]), there is a finite
subgraph of G with the same chromatic number.

So let us assume that the finite unit distance graph H has maximal chromatic
number. Obviously, H is also unit distance graph in an infinite number of other
norms. The simplest of these norms is obtained by only retaining the minimal
number of points P on the original unit circle, namely those for which the line OP
connecting the point to the origin is a translate of an edge in H. We form a new
unit circle as the boundary of the convex hull of the set of these lines OP . This
unit circle is symmetric with respect to the origin and defines a norm in which H
is a unit distance graph.

We conclude that to determine the maximal chromatic number for unit distance
graphs relative to normbased metrics in the plane we need only investigate those
norms in which the unit circle is a polygon.
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General considerations

In the following we shall not talk much about graphs, but concentrate on per-
missible colourations of the whole plane, i.e. colourations where two points with
distance 1 have different colours. The plane is usually described as R2, but occa-
sionally also as C.

The norm function applies to vectors, but for simplicity we shall also consider
it a point function, so that for an arbitrary point P = (x, y) = z we define ‖P‖ =
‖(x, y)‖ = ‖z‖ = ‖OP‖, i.e. as the distance from origo to the point.

Assume that the unit circle is a parallelogram. We can always find a linear
transformation mapping this unit circle on a square which again is the unit circle
for the supremum norm:

(1) ‖(x, y)‖ = max{|x|, |y|}.

This linear transformation, when applied to the whole plane, is an isometry of the
plane with the original norm on the plane with the supremum norm, and obviously
we can restrict attention to the latter when discussing colouration of unit distance
graphs.

Also, in the following, we shall call two colourings f and g (understood as map-
pings of the plane into a fixed set of colours) equivalent if there is an isometry i of
the plane and a permutation p of the set of colours such that f = p ◦ g ◦ i.

Only equivalence classes of colourings will be discussed.

All four-colourings in the supremum norm

Divide the plane into classes

(2) Ka,b = {(a + m, b + n) | m,n ∈ Z} (0 ≤ a, b < 1).

In each such class Ka,b each of the points (a, b), (a + 1, b), (a, b + 1), (a + 1, b + 1)
has distance 1 from each of the others, and so four colours are necessary for each
class.

In the remainder of this section the term “line”means a vertical or a horizontal
line.

Assume that we have a permissible four-colouring of the plane.
Consider first

Case 1. No line in any Ka,b contains three consecutive points with three different
colours.

Thus any line in a given class is two-coloured. We shall show that this implies
that any line in the plane is two-coloured.

In fact, we compare the two classes Ka,b and Ka,d with 0 ≤ b < d < 1. Here the
point (a, b) ∈ Ka,b has distance one from the two points (a+1, d) and (a+1, d−1),
both belonging to Ka,d, and so its colour must belong to the complement to the
colourset of the line x = a + 1 in Ka,d. Thus the line x = a in Ka,b has the same
colourset as the line x = a in Ka,d, q.e.d.

For arbitrary real t we define St as the set of colours used to colour the points on
the line x = t. We saw that Sa was the complement of Sa+1 and so equal to Sa+2.
The argument is applicable for all real a, and so St is always a 2-set depending only
on t modulo 2.
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Similarly the set of colours used for points on the line y = u is a 2-set Tu

depending on u modulo 2.
Clearly the point (a, b) has a colour in Sa∩Tb, which then cannot be empty. But

the set Sa ∩ Tb+1, which contains the colour of (a, b + 1), cannot be empty either,
and so the colour of (a, b) is simply the unique element in Sa ∩ Tb.

Let the set of colours be M = {1, 2, 3, 4}.
We have

Theorem 1. Each equivalence class of permissible four-colourings of the plane
with the supremum norm and with each horizontal or vertical line two-coloured can
be represented by a colouration determined in the following way:

To each a ∈ [0, 1) we choose a colourset Sa from the collection S = {{1, 2}, {3, 4}},
and to each b ∈ [0, 1) we choose a colourset Tb from the collection T = {{1, 3}, {2, 4}, {1, 4}, {2, 3}}.

For each real number t we define the colourset

St =

{
St−[t] for [t] even

{St−[t] for [t] odd

with the complement taken relative to M .
For each real number u we define the colourset

Tu =

{
Tu−[u] for [u] even

{Tu−[u] for [u] odd.

The colour of the point (t, u) is then the unique member of St ∩ Tu

Proof. If two points (t1, u1) and (t2, u2) have distance 1, either |t1− t2| or |u1−u2|
is equal to 1, and so either St1 ∩ St2 or Tu1 ∩ Tu2 is empty, and the colours of the
two points must be different.

It remains to show that all possibilities are accounted for.
Clearly, both S and T contains with each member also its complement, and so

each collection has an even number of members. Since there are 6 2-sets in all,
one of the collections has 2 members. Choose the isometry i of the definition of
equivalence of colourings such that S has two members, and choose the permutation
p such that these members are those of the theorem. The result follows.

A subcase is obtained, if one replaces T by the subset {{1, 3}, {2, 4}}.

Case 2. There is a class Ka,b with a horizontal or vertical line containing points
with at least three different colours.

Without loss of generality we can assume that the colourset M is {1, 2, 3, 4}, and
that the colour function C takes the values 1,2,3 in the points (a− 1, b), (a, b), and
(a + 1, b), respectively, where a and b are some real numbers (see Figure 1).
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(a− 1, b + 1) (a, b + 1) (a + 1, b + 1)

(a− 1, b) (a, b) (a + 1, b)

Figure 1

Clearly, C(a, b + 1) = 4, and so C(a− 1, b + 1) = 3 and C(a + 1, b + 1) = 1. The
corresponding three values of C on the line y = b + 2 are the same as those on the
line y = b in the same order. Using the same argument as in Case 1, we see that
the lines x = a − 1, x = a, and x = a + 1 are two-coloured. But then any line
x = a + n, where n is integral, is two-coloured.

And we can say more. We use the simple fact that on no line can we have three
different colours for points in a closed interval of length 1. Thus, on the line y = b,
if we define the real number d ∈ [0, 1] as the supremum of the numbers d′ such that
all points in the interval a−d′ ≤ x ≤ a have colour 2, there cannot be a point (x, b)
with colour 3 for a < x < a + 1− d (otherwise there should exist two points on the
line y = b + 1 with distance 1 and both having the colour 4). We conclude that
all points (x, b) with x ∈ (a − d, a + 1 − d) have colour 2. And exactly one of the
endpoints must also have this colour.

If a+1−d < x ≤ a+1, the point (x, b) has distance 1 from the points (a, b+1),
(a + 1, b + 1), and (x− 1, b) and so must have the colour 3.

Similarly, for a− 1 ≤ x < a− d the point (x, b) has colour 1.
Any point (x, b + 1) with a− d < x < a + 1− d must then have the colour 4.
But now we can consider also points (x, b) with a − 1 − d < x < a − 1, which

must then have the colour 1. Similarly points (x, b) with a + 1 < x < a + 2 − d
must have the colour 3.

Obviously, this type of argument shows, by induction on |m|, that for all integers
m and for n ∈ {−1, 0, 1} the colour of a point (a+n+x, b+m), where−d < x < 1−d,
is the same as that of the point (a + n, b + m).

Actually, this last statement is valid for all integers n.
To see this it suffices to consider the case n = −2, m = 0. The hitch is that the

colour of (a − 2, b) can be chosen freely from the set {2, 4}. But in any case, the
colour of (a− 2 + x, b), where −d < x < 1− d, must be different from those of the
points (a − 1 + x, b), (a − 1 + x, b + 1), and (a − 2, b + 1), which leaves the colour
of (a− 2, b) as the only possibility, q.e.d.

It also follows that after we for each point (a+n, b), where the integer n satisfies
|n| > 1, have chosen an admissible colour (i.e. of the same parity as n), the
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colouration of all lines y = b + m (m integral) is determined.
The next step is to consider the colouration of the lines y = b+u where 0 < u < 1.

We can see that the colour of a point (a + n + x, b + u), where −d < x < 1 − d,
must have the parity of n. This implies that the colour for fixed values of n and u
does not depend on x for −d < x < 1− d, since otherwise we have a contradiction
when trying to colour points on the line y = b + u + 1.

Now is the time to introduce some simplification.
We have already used an isometry to arrive at the supremum norm case. Let us

further use translation, possibly combined with a change of direction of the x-axis,
to get to the situation, where a = b = d = 0, and the points (x, 0) with 0 ≤ x < 1
have the colour 2.

For each u ∈ [0, 1) we choose a sequence (Cn(u) | −∞ < n < ∞) of colours
satisfying the condition that for all n the colour Cn(u) has the parity of n (we have
already chosen C0(0) = 2).

Then the colouration is completely described by the following:
For each point (x, y) we define C(x, y) = C[x](y − [y]) if [y] is even, otherwise

C(x, y) = C[x](y − [y])± 2 (exactly one of these two numbers belongs to M).
Finally we must check that the colouration found is also admissible:
Let the two points (x1, y1) and (x2, y2) have distance 1. Then, if [x1] = [x2], we

must have |y1−y2| = 1, and |C(x1, y1)−C(x2, y2)| = 2. Otherwise |[x1]− [x2]| = 1,
and C(x1, y1) and C(x2, y2) have different parity.

We have shown

Theorem 2. Each permissible four-colouring of the plane with the supremum norm
and with a horizontal or vertical line which is not two-coloured, is equivalent to a
four-colouring constructed as follows:

For each u ∈ [0, 1) we choose a sequence (Cn(u) | −∞ < n < ∞) of colours
satisfying the condition that for all n the colour Cn(u) has the parity of n.

For each point (x, y) we define the colour as

C(x, y) =

{
C[x](y − [y])

C[x](y − [y])± 2

if [y] is even
otherwise.

This paper was slightly modified on 5 December 2014.
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