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Abstract. An important property of a geometric sequence is its asymptotic distance

from the integers. The infimum of these distances for all geometric sequences with

the same ratio α > 1 is a property C(α) of the ratio. Estimates of C(α) are given,

depending on the algebraic nature of the number α.

Introduction

For all real numbers x we define ‖x‖ as the distance from x to the integers. Next,
the function C : (1,∞) → [0, 1

2 ] is defined as

(1) C(α) = inf
λ>0

lim sup
n→∞

‖λαn‖.

Obviously, C takes the value 0 on the integers.
Here, and in the following example, the infimum in (1) is obtained with λ = 1.
If α > 1 is a zero of a monic irreducible polynomial P with integral coefficients,

and its conjugates (the remaining zeros of P ) have absolute value less than one,
α is called a PV-number, or a Pisot-number, or is said to belong to the set S.
Then C(α) = 0, simply because the sum of the nth powers of the zeros of P is an
integer, and the contribution from the zeros different from α tends towards zero
when n →∞.

If α > 1 is a zero of a monic irreducible polynomial P with integral coefficients,
and its conjugates have absolute value less than or equal to one (at least one, and
then, in fact, all but one of them, having absolute value equal to one), α is called
a Salem-number, or is said to belong to T . What can be said about C(α) in this
case?

We first note that the set of zeros of P is the union of 2-sets {w1, w2} with
w1w2 = 1. One such set is {α, 1/α}, while the other 2-sets have the form {zj , z̃j},
where j = 1, . . . , k and, for definiteness, 0 < θj = arg zj < π for all j. The degree
of P is then 2k + 2.

We shall show that the numbers 1 and θj/(2π) (j = 1, . . . , k) are linearly
independent over the integers. Otherwise we could find integers tj (j = 0, . . . , k),
not all zero, such that

(2)
k∑

j=1

tjθj = 2t0π,
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i.e.

(3)
k∏

j=1

z
tj

j = 1.

For definiteness, we assume t1 6= 0.
Let K be a splitting field of P . Let σ be an automorphism of K satisfying

σ(z1) = α. Since zj 6= z̃1 for j 6= 1 we get the contradictory αt1 = 1 when taking
the absolute value of the transformation of (3) by σ.

An application of Kronecker’s Theorem now shows that for arbitrary real num-
bers r1, . . . , rk and arbitrary real ε > 0 there are an infinite number of integers n
such that integers p1, . . . , pk exist, for which

(4) |nθj − 2pjπ − rj | < ε

for j = 1, . . . , k.
From (4) follows, in particular, that the numbers ‖

∑k
j=1 2 cos nθj‖ are dense in

[0, 1
2 ]. The same must then be true for ‖αn‖. Clearly, λ = 1 is not an interesting

choice. But I cannot exclude the possibility that it might still be possible to obtain
a general estimate of C(α) < 1

2 for these numbers.
To my knowledge, for no other number α than those already mentioned the exact

value of C(α) is known. I shall give upper and lower bounds for C(α) obtainable
by simple methods.

General bounds

If nothing is known about the algebraic nature of α, we can only give rather
coarse bounds for C(α).

The following results are implicit in [3, Chapter II]:
For all α > 2 we have C(α) ≤ 1

2(α−1) .
For all α > 1, except for a countable set, we have C(α) ≥ 1

2(α+1)2 . Thus, at a
point where C(α) = 0, C cannot be upper semicontinuous.

If α belongs to a certain countable dense subset of (1,∞) (the so-called E-
numbers), we have C(α) ≤ 1

2(α−1)2 . Those E-numbers which do not belong to
S ∪ T are generally believed to be transcendental numbers (see [1]).

The ratio is an algebraic integer

Assume that α > 1 is a zero of a monic polynomial P with integral coefficients,
and that all the other zeros of P also have absolute value greater than one. We
also assume that α is not a natural number. Let λ > 0 and put, for n ∈ N0,

(5) λαn = pn + rn,

where pn ∈ Z, and |rn| = ‖λαn‖.
Let P (z) =

∑m
j=0 ajz

j , where am = 1. Then, using (5), for n ∈ N0,

(6) 0 =
m∑

j=0

λajα
n+j =

m∑
j=0

ajpn+j +
m∑

j=0

ajrn+j .
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If now |rn| < 1Pm
j=0 |aj | for n ≥ n0, we must have

(7)
m∑

j=0

ajrn+j = 0 for n ≥ n0.

But then, because of the assumption concerning the zeros of P , we shall have
|rn| → ∞ for n → ∞, unless rn = 0 for all but a finite number of n-values. The
first case cannot occur, and the second is also excluded, since we have assumed that
α is not a rational integer.

We conclude that in this case C(α) ≥ 1Pm
j=0 |aj | .

Example: α =
√

n, where n is a natural number and not a square. Then we see
that C(

√
n) ≥ 1

n+1 . In particular, the function C cannot be lower semicontinuous
at such a point α =

√
n when n ≥ 14. In fact, in any neighbourhood of such a point

there are E-numbers, and so there is a sequence (αn) of numbers approaching
√

n,
so that lim supn→∞ C(αn) ≤ 1

2(
√

n−1)2
. But 2(

√
n− 1)2 > n + 1 for n ≥ 14.

The ratio is a non-integral algebraic number

Assume that α > 1 is a zero of a primitive irreducible, but not monic, polynomial
P with integral coefficients. Let P (z) =

∑m
j=0 ajz

j , where am > 1. Eqs.(5) and (6)
are again valid. But then, if |rn| < 1Pm

j=0 |aj | for all n ≥ n0, Eq.(7) is also valid for

these n-values. We also have
∑m

j=0 ajpn+j = 0 for n ≥ n0. The generating function

(8) f(z) =
∞∑

n=0

pnzn

is then a rational function

(9) f(z) =
Q(z)
P1(z)

,

where P1 is the polynomial reciprocal to the polynomial P defined above: P1(z) =
zmP ( 1

z ) =
∑m

j=0 am−jz
j . Q has integral coefficients, and Q and P1 have no common

factors. But then, according to a theorem of Fatou (see [4, page 4]), P1(0) = ±1,
contradicting am > 1.

We conclude that also in this case C(α) ≥ 1Pm
j=0 |aj | .

The ratio is half an odd integer

Let α = p
2 , where p is an odd integer at least equal to 3. From the above we

have
1

p + 2
≤ C(α) ≤ 1

p− 2
.

We can improve both inequalities.
We again use the notation of Eq.(5), which gives us,

(10) pn+1 − αpn = αrn − rn+1.
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We first show that C(p
2 ) ≤ 1

p .
Let p0 ∈ N be given. We shall show that there is a λ ∈ (p0, p0 + 1) so that

‖λ(p
2 )n‖ ≤ 1

p for all n ∈ N0.
We first generate the sequence (pn) of integers and an auxiliary sequence (εn),

where for all n ∈ N0 we have εn ∈ {−1, 0, 1}, by a method similar to the one used
in [2].

In step n the numbers pm and εm for m < n are given.
We put εn = 0 if pn−1 is even. If n− 1 is the lowest suffix for which pn−1 is odd,

we put εn = 1. In the other cases where pn−1 is odd we put εn = −εm, where m is
the maximal suffix satisfying both m < n and εm 6= 0.

When εn is determined, we put

(11) pn =
ppn−1 + εn

2
.

When the sequence (εn) is generated, we define, for all n ∈ N0,

(12) rn =
∞∑

k=1

(
2
p

)k−1
εn+k

p
.

Note that the signs of the non-zero terms on the rhs of (12) alternate and that
these terms decrease in absolute value when k increases. Thus rn has the sign of
εm, where m is the minimal suffix satisfying both m > n and εm 6= 0. In particular,
r0 > 0. Moreover, for all n ∈ N0, |rn| < 1

p .
Putting λ = p0 + r0, we have p0 < λ < p0 + 1

p < p0 + 1. Eq.(12) implies that
rn = εn+1

p + 2
prn+1 for all n ∈ N0. But then Eq.(10) is satisfied for all n ∈ N0, and

so is Eq.(5). Thus we have indeed shown that C(p
2 ) ≤ 1

p .
Next we show that C(p

2 ) ≥ p
p2+4 .

Let 1
p+2 < δ < p

p2+4 . We shall derive a contradiction from the assumption that
for some λ > 0 we should have ‖λ(p/2)n‖ ≤ δ for all n ∈ N0.

With the notation of (10) there are only two possibilities for the relation between
|rn| and |rn+1|:

Either
pn is even, rn and rn+1 have the same sign, and |rn+1| = (p/2)|rn| (note that

|rn| < 1/p),
or
pn is odd, and (10) gives |(p/2)rn − rn+1| = 1

2 . Thus rn and rn+1 have opposite
signs, and

(13) |rn+1| = (1− p|rn|)/2.

Clearly, pn must be odd for some n, say for n = n0. Then (13) should be used
to determine |rn+1|. Now |rn| ≤ δ implies |rn+1| ≥ (1− pδ)/2. But if pn+1 is even,
we must have |rn+1| ≤ 2δ/p, since, otherwise, we would have |rn+2| > δ. And so
we should have (1− pδ)/2 ≤ 2δ/p, i.e. δ ≥ p

p2+4 , contrary to assumption.
Thus pn is odd, and (13) is fulfilled, for n ≥ n0.
We rewrite (13) as

|rn+1| −
1

p + 2
= −p

2

(
|rn| −

1
p + 2

)
,



ON THE DISTRIBUTION MODULO ONE OF GEOMETRIC SEQUENCES 5

and so

|rn| −
1

p + 2
=

(
−p

2

)n−n0
(
|rn0 | −

1
p + 2

)
.

But |rn| is bounded, and so we must have |rn| = 1/(p + 2) for n ≥ n0.
Since rn and rn+1 have opposite signs, (10) gives

(14) pn+1 =
ppn + εn

2
[n ≥ n0),

where εn = sign(rn).
Equation (14) can be written as

(p + 2)pn+1 + εn+1 =
p

2
((p + 2)pn + εn) ,

or
(p + 2)pn + εn =

(p

2

)n−n0

((p + 2)pn0 + εn0)

for all n ≥ n0, which is impossible, since the integer (p + 2)pn0 + εn0 cannot be
divisible by arbitrarily high powers of 2.

Thus, we must have C(p
2 ) ≥ p

p2+4 , q.e.d.
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