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Abstract.

Consider a norm-derived metric of the plane. Let f map the plane into itself in

such a way that any two points with distance 1 from each other are mapped on two

points with the same property. If the norm is the Euclidean one, f is an isometry

([1]). I prove that f is an isometry if only the unit circle (i.e. the set of points with

distance 1 from the origin) is not a parallelogram.

General considerations

Points P in the plane will usually be denoted and treated as complex numbers.
Mostly, it will not be necessary to distinguish between the point P and the vector−→
OP from the origin to the point.

For instance, ‖z‖ stands for the norm of the vector connecting the origin with
the point z.

The metric of the plane is determined by the unit circle S, i.e. the set of points
z with ‖z‖ = 1. Accordingly, we shall denote such a plane by C(S).

The set of points Q with ‖−→PQ‖ = 1 will be denoted S(P ).
Our goal in the present paper is to investigate distance 1 preserving mappings

of a plane C(S) into itself.
We shall need some properties of unit circles.
The unit circle S is the boundary of the open unit disk U , the set of points with

norm less than one.
The open unit disk U is convex, bounded, and symmetric with respect to the

origin, which belongs to U .
On the other hand, any subset of the plane with these properties is the open unit

disk for some norm. To see this, we first note that if P ∈ U \ {0}, we can define
the positive real number tm as sup{t ∈ R | tP ∈ U}. Then tmP ∈ S. But there
can be only one positive real number t with tP ∈ S. In fact, assume that t′ were
another such number. Because of the convexity of U we must then have t′ > tm.
Let now N be a neighbourhood of O contained in U . Evidently, we can find a point
Q ∈ U so close to t′P that the convex hull of N ∪ {Q} contains tmP , and we have
a contradiction. Thus, we can define ‖P‖ = 1/tm. Similarly, for P outside U we
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can find exactly one positive number t such that tP ∈ S, and we define ‖P‖ = 1/t.
The function ‖ · ‖ is easily seen to be a norm with S as unit circle.

The remarks above are just applications of the theory of Minkowski functionals
(see for instance [2, page 24]).

Now, some auxiliary results,

Lemma 1. Let P1, P2 and P3 be three collinear points, all belonging to S. Then
their convex hull, an interval I, also belongs to S.

Proof.
We can assume that I = [P1, P3], and that P2 is an interior point of I. Let

P4 ∈ I be a point belonging to U . As above we can define a real number tm > 1
such that P ′4 = tmP4 ∈ S. Next choose a real number t ∈ (0, 1) close to 1 such that
the triangle with vertices tP1, tP3, and tP ′4, all belonging to U , contains P2 in its
interior, a contradiction.

We have seen that for each angle θ we can define exactly one positive real number
r(θ) such that r(θ)eiθ ∈ S.

For each θ there is a line LP (in general not unique) through P = r(θ)eiθ such
that LP does not contain any points of U . In fact, assume that there were no such
line. So consider the lines L(φ) = {P + teiφ | t ∈ R}. There is no point in L(θ)∩U
with a positive value of t, but there is in L(θ + π) ∩ U . And so we can define φm

as the supremum of the angles φ ∈ (θ, θ + π) such that the positive half of L(φ)
has no point in common with U . According to assumption the negative part has,
and for φ slightly less than φm both parts of L(φ) have points in common with U ,
contradicting Lemma 1.

Actually, because U is bounded, and because a certain neighbourhood of the
origin belongs to U , there is a positive number ε such that for any P the angle
between LP and [O,P ] is greater than ε.

Let P = r(θ)eiθ. Let Q = r(θ′)eiθ′
, where the variable θ′ tends towards θ,

for definiteness increasing. When θ′ is sufficiently close to θ, the point Q will lie
between the lines {P + tei(θ−π+ε) | t ∈ R} and {P + tei(θ−ε) | t ∈ R}. Thus Q
approaches P , r(θ) is continuous, and S is a Jordan curve.

Remark. When, in the following, without further explanation, two Jordan curves
J1 and J2 are stated to intersect, the reasoning behind is always that one can find
one point of J2, say, inside J1, and another point of J2 outside J1.

On notation. When discussing positions of points along a curve we shall often use
inequalities like arg θ1 < arg θ2. This will be taken to mean that we can find values
of the arguments such that arg θ1 < arg θ2 < arg θ1 + π.

Orient LP in the usual way, i.e. the positive half of LP is the one intersected by
the line through O and Q when arg Q is slightly greater than arg P . Consider LQ

for such a point, and assume that LQ 6= LP . Then the point R = LQ ∩ LP cannot
lie on the negative part of LP . We may have R = P , in which case Q must be on
the same (the left) side of LP as O is, and the angle from LP to LQ is positive.
Otherwise R belongs to the positive part of LP , and P is situated to the same side
of LQ as O. Again the angle from LP to LQ must be positive.

Note that this result does not (in case of non-uniqueness) depend on which lines
LP and LQ are chosen.
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There is a similar result concerning angles between chords:

Lemma 2. Let z1, z2, z3 be points on S with

arg z1 < arg z2 < arg z3 ≤ arg z1 + π.

Then

(1) arg(z2 − z1) ≤ arg(z3 − z1) ≤ arg(z3 − z2).

Proof.
If a point in (z1, z3) belongs to S, the whole interval [z1, z3] is contained in S,

and we have equality in (1) (because of the restriction arg z3 ≤ arg z1 +π the point
z2 belongs to (z1, z3)). Otherwise, (z1, z3) ⊂ U , and z2 and O are on opposite sides
of [z1, z3]. We can orient the coordinate axes such that arg(z3 − z1) = 0. Then
=z2 < =z3 = =z1 < 0, from which follows strict inequality in (1).

In the following, the notions distance and length will always be those induced
by the norm for which S is the unit circle.

Lemma 3. Let P1 and P2 be two points with distance at most equal to 2. Then
the set M = S(P1)∩S(P2) is symmetric with respect to the midpoint of the interval
[P1, P2]. There are now the following possibilities:

(1) M consists of two points with sum P1 + P2;
(2) M consists of a single interval. In this case ‖−−→P1P2‖ = 2;
(3) M consists of two intervals parallel to an edge of the unit circle and parallel

to
−−→
P1P2. The length of each interval is equal to the length of the edge minus

‖−−→P1P2‖. Every point in one of the intervals has distance 2 from every point
in the other interval.

Proof.
To see that M is symmetric with respect to the midpoint of the interval [P1, P2],

do a simple calculation: If Q ∈ M , also P1 + (P2 −Q) = P2 + (P1 −Q) ∈ M , and
the midpoint of the interval [Q,P1 + P2 −Q] is (P1 + P2)/2.

It suffices to consider the case where M consists of more than two points.
Assume first that (P1 + P2)/2 ∈ M . From Lemma 1 it follows that if Q ∈ M ,

the whole interval [Q,P1 + P2 − Q] belongs to M . But a halfline from P1 just
missing (P1 + P2)/2 can intersect M in only one point. And so M consists of a
single interval through (P1 + P2)/2.

Otherwise ‖−−→P1P2‖ < 2, and no point of the straight line L through P1 and P2

belongs to M . Imagine L as horizontal.
We can assume the existence of two points Q1 and Q2 belonging to M and

situated above L.
Now S(P2) contains, in addition to the points Qj also the points

Rj = P2 + (Qj − P1) = Qj + (P2 − P1) (j = 1, 2),

obtainable by translating Qj by the vector
−−→
P1P2.

Let, for j = 1, 2, Lj be the line through Qj and Rj .
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Assume that the two parallel lines L1 and L2 do not coincide. For definiteness,
let L1 separate L2 and L.

S(P2) is symmetric with respect to P2 and therefore also contains the points
Q′j = 2P2 −Qj and R′j = 2P2 −Rj .

Consider the parallelogram with vertices Q2, R2, Q′2, and R′2. The interior of
this parallogram must belong to U(P2) and therefore cannot contain points of S(P2)
like Q1 and R1. But then these two points must belong to the boundary of the
parallelogram, i.e. we must have Q1 ∈ [Q2, R

′
2]. Now, R′2 = 2P2− (Q2 +P2−P1) =

P1 + P2 − Q2, and so, according to Lemma 1, we have the first case, contrary to
assumption.

That L1 and L2 coincide, means that the intervals [P1, P2] and [Q1, Q2] are
parallel to the same edge of S(P2). Actually, this edge contains each interval
[Qj , Rj ], and so its length must equal the sum of the lengths of [P1, P2] and the
maximal interval [Q1, Q2].

We introduce a coordinatesystem with x-axis along the line through P1 and P2,
and origin at (P1 + P2)/2. Let the component of M situated above the x-axis
stretch from x = b to x = c. The component below the x-axis will then have x-
values between −c and −b. To find the distance between a point in the first interval
(at x = d1, say) and a point in the second interval at x = d2, we find a line through
the origin parallel to the line connecting these two points. This line will obvously
intersect the first interval at x = (d1 − d2)/2 ∈ [b, c], i.e. at a point of M , and so
have length 1. This means that the sought distance must be 2, q.e.d.

A trivial but useful consequence of Lemma 3 is

Lemma 4. If an S-edge has length 2, the unit circle is a parallelogram.

Proof.
Let [A,B] be the edge of length 2. Then also [−B,−A] belongs to S and has

length 2. The two points A and −B both have distance 2 from both points B
and −A. Thus, according to Lemma 3, A and −B have distance 2 from any point
in [B,−A], and this interval belongs to S. The same is true for [A,−B], and the
lemma is proved.

Lemma 5. The distance between a fixed point z ∈ S and a variable point z′ ∈ S
does not decrease when arg z′ increases from arg z to π + arg z.

Proof.
Let z1 and z2 be points on S with

arg z < arg z1 < arg z2 ≤ arg z + π,

but with

(2) ‖z2 − z‖ < ‖z1 − z‖.

Let j ∈ {1, 2}. Then

arg
(

zj − z

z

)
= arg

(zj

z
− 1

)
∈ (0, π]

and also

arg
(

zj − z

zj

)
= arg

(
1− z

zj

)
≥ 0.
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Thus,

(3) arg zj ≤ arg(zj − z) ≤ arg z + π.

Now compare the triangle with corners z, z1, z2 with the triangle with corners

O,
z1 − z

‖z1 − z‖
,

z2 − z

‖z2 − z‖
.

If we had equality in (2), these two triangles would be similar, and the two S-chords
[z1, z2], [ z1−z

‖z1−z‖ ,
z2−z
‖z2−z‖ ] would be parallel. As it is, the angle from the first chord to

the second one is negative. But Lemma 2 together with (3) shows this to be false.
Thus (2) cannot be satisfied, q.e.d.

Lemma 6. A closed curve S′ (whose interior contains U properly) exists, such
that for each point R ∈ S′ there are two points P and Q in S ∩S(R), such that the
distance ‖−→PQ‖ equals 1.

Proof. We first consider a point z tracing the unit circle in the positive direction,
i.e. arg z increases from 0 to 2π. In distance 1 from z we find a point z′ ∈ S
with arg z < arg z′ < arg z + π. The problem is that sometimes z′ is not uniquely
determined. And it may also happen that several values of z give the same value
of z′.

To handle this situation I find it convenient to regard (arg z, arg z′) as a point
on a torus T 2 (T is the unit circle in Euclidean geometry). We shall show that the
set of points {(arg z, arg z′) | ‖z − z′‖ = 1} can be parametrized as a curve on T 2.

We choose t = arg z + arg z′.
Note that the set E = {z ∈ S | z′ is not unique} is finite. In fact, according to

Lemma 3 the line from O to a point z ∈ E must be parallel to an edge of S, such
that each point of a non-empty subinterval of this edge has distance 1 from z. It
also follows from Lemma 3 that the length of the edge is greater than 1. The curve
S is easily shown to be rectifiable (with length at most 8), and thus the number
of such edges is finite (in Lemma 9 below it is shown that this number is at most
four), and so is the cardinality of E.

Similarly, the set E′ = {z′ ∈ S | z is not unique} is finite. It also follows from
the above that, regarded as sets of points, the two sets E and E′ are equal.

Let z ∈ E. When z′, with arg z′ increasing, runs through the subinterval in which
‖z−z′‖ = 1, the function Φ(t) = (arg z, arg z′) is trivially defined and continuous in
the corresponding interval of t-values, which is traced in the direction of increasing
t.

Similarly, when z′ ∈ E′. Here z runs through an interval with arg z increasing.
Let us now consider pairs (z, z′) with z /∈ E and z′ /∈ E′. Since z /∈ E, z′ is

uniquely determined. We can also show that in the neighbourhood of such points
z, the angle arg z′ is a strictly increasing function of arg z. Otherwise we could find
two points z1 and z2 with arg z1 < arg z2 and arg z′2 ≤ arg z′1. But then, according
to Lemma 5,

1 = ‖z2 − z′2‖ ≤ ‖z2 − z′1‖ < ‖z1 − z′1‖ = 1,

where the strict inequality is due to z′1 /∈ E′.
Assume that zn −→ z0 through S \ E, for definiteness with arg zn decreasing.

Then the sequence arg z′n is also decreasing, and, if z0 /∈ E, for all n we have
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arg z′n ≥ arg z′0. But if z′n −→ w 6= z′0, we would, because of the continuity of the
norm function have ‖z0 − w‖ = 1, a contradiction. If z0 ∈ E, the point w must
be the point on S with distance 1 from z and arg z0 < arg w < arg z + π whose
argument is maximal. Similarly, the point w obtained as limit for a sequence z′n
corresponding to a sequence zn approaching a point z0 ∈ E counter-clockwise has
minimal value of its argument.

We conclude that in a neighbourhood of a point z /∈ E the angle arg z′ is a
continuous and non-decreasing function of arg z. Thus t is here a continuous and
strictly increasing function of arg z. The inverse function is then also continuous, so
that the function pair (arg z, arg z′), which, as we have seen earlier, is continuous for
t-values interior to the intervals corresponding to z ∈ E and z′ ∈ E′, is continuous
everywhere. Since, as we have seen, z is a continuous function of arg z (and z′ of
arg z′) both z and z′ become continuous functions of t and describe the unit circle
when t runs through an interval [0, 4π). The point z + z′ describes a closed curve
S′, which obviously satisfies our requirements (the proof that the interior of S′

contains U properly is postponed to the next section).

Lemma 7. If we can find four points Pj (j = 1, 2, 3, 4) such that the distance
between any two points among them is equal to 1, the unit circle is a parallelogram.

Proof.

Assume first that S(P1) ∩ S(P2) = {P3, P4}. Then, according to Lemma 3, we
have P3+P4 = P1+P2. If, at the same time, we had M = S(P1)∩S(P3) = {P2, P4},
we would also have P3 + P1 = P2 + P4, implying P4 = P1, which is incompatible
with ‖P1−P4‖ = 1. Thus M must contain more than two points, and so, according
to Lemma 3, consist of two intervals parallel to [P1, P3]. But P2 and P4 must then
belong to the same component of M , as otherwise, again according to Lemma 3,
their distance would be 2. The S-edge to which [P1, P3] and [P2, P4] are parallel,
must have maximal length 2. And so, according to Lemma 4, S is a parallelogram.

It follows from our assumption that P3 and P4 are on opposite sides of the line
through P1 and P2. Since the four points apparently are vertices of a parallelogram
Π, [P1, P2] and [P3, P4] must be diagonals, and [P1, P4] and [P3, P2] are parallel.

If we did not have S(P1) ∩ S(P2) = {P3, P4}, rôles would be interchanged, and
we would find that [P1, P2] and [P3, P4] were sides of a parallelogram. Again there
would be an S-edge of maximal length, and S would be a parallelogram.

Lemma 8. It is possible to construct a hexagon with all vertices on the unit circle
and with all sides of length 1. One vertex may be specified arbitrarily.

Only if the unit circle is a parallelogram, is it possible to inscribe in it polygons
with three, four, five, seven or eight sides, all of length 1.

Proof.

The hexagon construction is illustrated in Figure 1.
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Figure 1

Here the point O is the centre of a unit circle S in the given norm, and P1 is an
arbitrary point on S. The point P4 ∈ S is its opposite point, and P2 ∈ S is chosen
as a point having distance 1 from P1. The point P3 ∈ S is the point found by going
from O in a direction parallel to

−−→
P1P2. Then

−−→
P3P2 becomes parallel to

−−→
OP1 (and

so also to
−−→
P4O) and is easily seen to have length 1. Finally,

−−→
P4P3 becomes parallel

to
−−→
OP2 and has length equal to 1. Let P5 and P6 be the points on S opposite to

P2 and P3, respectively. Then the hexagon P1P2P3P4P5P6P1 is the one we were
looking for.

According to Lemma 3 each vertex is uniquely determined by the previous one,
and the hexagon is the only possible inscribed polygon with all sides of length 1
(in the following just called an inscribed polygon), unless S has an edge of length
greater than one.

We use Figure 1 for the further analysis of inscribed polygons.
The procedure used in the construction of Figure 1 can be formalized in the

following way:
For j ≥ 2 we put

(4) Pj+1 = Pj − Pj−1.

For j ≥ 3 we substitute in (4) the expression obtained from (4) by replacing j
by j − 1. This gives Pj+1 = −Pj−2. With j understood modulo 6 this shows that
(4) is, in fact, valid for all j.

In the following we shall discuss unit circles S containing at least one edge (and
so, because of the symmetry with respect to the origin, at least 2 edges) of length
greater than 1.

Then Pj+1 is not, as in (4), uniquely determined from Pj and Pj−1, but may,
for j ≥ 2, be replaced by

(5) P ′j+1 = Pj+1 + tj+1P
′
j ,

where (4) has been changed to

(4’) Pj+1 = P ′j − P ′j−1,

and we have put P ′j = Pj for j = 1, 2.
In (5), the real number tj+1 cannot be chosen arbitrarily.



8 GUNDORPH K. KRISTIANSEN

We first note that (5) can be applied with tj+1 6= 0 only when the intersection
S ∩ S(P ′j) contains the interval [Pj+1, P

′
j+1]. Thus S must have an edge Ej+1

containing the interval [Pj+1 − P ′j , Pj+1 + tj+1P
′
j ] for tj+1 > 0, and the interval

[Pj+1 − P ′j + tj+1P
′
j , Pj+1] for tj+1 < 0. Both intervals have length 1 + |tj+1|, so

that we must have |tj+1| ≤ 1 with equality only if S is a parallelogram. Note that
Pj+1 − P ′j = −P ′j−1, so that −P ′j−1 ∈ Ej+1, and P ′j−1 ∈ −Ej+1, where −Ej+1 ⊂ S
is the interval symmetric to Ej+1 with respect to the origin. If tj+1 > 0, Ej+1

contains Pj+1 and Pj+2 as interior points. If tj+1 < 0, Ej+1 contains P ′j+1 and
−P ′j−1 as interior points.

Next we show that if, for some j ≥ 3, we have tj > 0, then we cannot have
tj+1 6= 0. In fact, Ej contains Pj+1 as an interior point, and so Pj+1 cannot
simultaneously belong to another S-edge.

But assume that, for some j ≥ 3, we have tj < 0 and tj+1 > 0. Then Ej

contains the interval [Pj+1, Pj ], and the general point in this interval can be written
P ′j − uP ′j−1, where tj ≤ u ≤ 1]. We find the point of intersection between this
interval and the line through O and P ′j+1:

P ′j − uP ′j−1 = k(P ′j − P ′j−1 + tj+1P
′
j).

We find k = u = 1/(1 + tj+1) < 1. Thus S separates O and P ′j+1, an impossibility.
And so tj+1 > 0 implies tj = 0, q.e.d.

We see that if, for some j ≥ 3, we have tj+1 > 0, we must have tj = tj+2 = 0.
In the following, we shall always assume that the vertices of the inscribed polygon

are indexed in such a way that for all j we have arg P ′j < arg P ′j+1.
The point P3 may have distance 1 from P1. This is possible iff S is a parallelo-

gram (Lemma 7). We then have an inscribed triangle.
Next we examine the possibility of inscribed quadrangles and pentagons. Here

the average increase arg P ′j+1 − arg P ′j is larger than obtained by the construction
in Figure 1. In particular, we can choose indexes such that P ′3 6= P3. Now use (5)
for j = 2, divided by P3. Since =(P2/P3) < 0, we must choose t3 < 0 to make
=(P ′3/P3) > 0 and thus arg P ′3 > arg P3. Then, according to the above, t4 ≤ 0. We
have

P ′3/P1 = (1 + t3)(P2/P1)− 1,

and so arg P1 < arg P ′3 ≤ arg P1 + π with equality only if t3 = −1,

P ′4/P ′3 = 1 + t4 − P2/P ′3,

showing that arg P ′3 < arg P ′4.
We conclude that if t3 > −1 the line L through O and P ′3 separates P1 from

P ′4. However, the interval [O,P ′3] belongs to S(P ′4), and P ′4 has distance greater
than 1 to P1, unless t3 = −1, which makes P ′3 = −P1 and necessitates that S
is a parallelogram. Then the line through O and P2 separates P ′4 from P1 unless
t4 = −1, making P ′4 = −P2. Actually, E3 contains the interval [P3,−P1 − P2], and
so S(P1) contains [P2,−P2] and thus P ′4.

With respect to inscribed pentagons, we continue the reasoning above, but we
are now looking for a point P ′5 in the intersection S ∩ S(P ′4) ∩ S(P1).

First consider the possibility t4 = 0, i.e. P ′4 = P4. We have P4 ∈ E3 and
P1 ∈ −E3, and their distance is 2. This is Case 2 of Lemma 3. The intersection
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S(P4)∩S(P1) is an interval I containing O and with centre at the point (P1+P4)/2,
which must belong to the line through O and P2. Thus the only candidate for P ′5
is P5 = −P2, which makes the whole interval [−P2, P2] a part of S(P1). So S is a
parallelogram, and the construction works for all t3 ∈ [−1, 0].

The only remaining possibility is t4 < 0. Now [P4, P
′
4] is part of [P5, P4] ⊂ E4,

which is parallel to [O,P ′3] and contains −P2. The S-edge −E4 goes through P2

and intersects the S-edge −E3 through P1 at −P4. The usual calculation confirms
that the interval [P1, P2] intersects the interval I = [O,−P ′4] at an interior point of
I unless t4 = −1 and P ′4 = −P2. For the moment disregarding this last possibility,
we see that the distance from P ′4 to P1 is less than 2, and so we do not have Case 2
of Lemma 3. We are not interested in Case 2 either, since we want a point P ′5 ∈ S.
Thus the only possibility is that S(P ′4) ∩ S(P1) consists of the two points O and
P ′4 + P1, the latter point being the only candidate for P ′5. When t4 decreases from
0 to −1 the point P ′4 + P1 moves linearly from t3P2, which is clearly inside S, to
the point −P3, which must be P ′5. But this presupposes t4 = −1, so that S is a
parallelogram, just as in the case P ′4 = −P2 above.

Note that if S is a parallelogram, all inscribed pentagons have three consecutive
vertices as S-edge midpoints.

Finally consider inscribed polygons with more than six vertices. Here the average
increase arg P ′j+1 − arg P ′j is smaller than obtained by the construction in Figure
1. In particular, we can choose indexes such that arg P ′3 < arg P3, i.e. have t3 > 0.
Then, according to the above, t4 = 0, P4 = P ′3 − P2, P5 = P4 − P ′3 = −P2, so that
not very much has been gained. We may, however, choose t5 6= 0.

But start with t5 = 0 (no extra S-edges in addition to the old ones ±E3, where
E3 contains [−P1, P

′
3]). We have P6 = P5 − P4 = −P ′3. Whatever value t6 has,

the point P ′6 = P6 + t6P5 belongs to the straight line L through −P3 and P1.
But L contains the S-edge −E3 to which P ′6 must belong. The point P7 with
arg P ′6 < arg P7 < arg P1 must belong to −E3 also, and so P ′6 must have distance 2
from P1, i.e. P ′6 = P1−2P2. Since P ′6 = −P ′3− t6P2 = P1− (1+ t3 + t6)P2, we must
have t3 + t6 = 1. And since we have an S-edge of length 2, according to Lemma 4
the unit circle must be a parallelogram.

Next consider the possibility t5 < 0. This means that S has an edge E5 contain-
ing [P6, P5] and having −P ′3 as an interior point. But −P ′3 should also belong to
the S-edge −E3, which is impossible.

So we are left with the possibility t5 > 0. Now t6 = 0, and P6 = P ′5 − P4 is
an interior point on the S-edge E5 containing the interval [−P ′3, P

′
5]. The arc on

S from P6 to P1 is contained in the union of the S-edges E5 and −E3. The unit
circle S(P ′5) contains the interval [O,P4], the continuation of which intersects the
S-edge −E3 = [−P ′3, P1] in the interior point −P4. Thus S(P6) contains the interval
[−P4, O], and P6 and P1 are on opposite sides of the line containing this interval.
And so ‖P6 − P1‖ > 1.

An upper bound for ‖P6−P1‖ is found as the length of the arc on S from P6 to
P1, i.e. 1+ t3 + t5. Three more edges in the inscribed polygon requires t3 = t5 = 1,
i.e. S must be a parallelogram. Then P ′3 = 2P2 − P1, while P4 = P2 − P1 = P3,
P ′5 = P ′3−2P2 = −P1, P6 = −P2, and P7 = P1−P2 = −P3. If we form P7−P6, we
get P1 again, and we have a heptagon. But with t7 = 1 we obtain P ′7 = −P2−P3 =
−P ′3 and P8 = −P3, an octagon. Actually, the octagon is just the unit circle, but
with the edge midpoints promoted to vertices.

In general, if we are satisfied with a heptagon, we must have the vertex P ′7 =
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P1 − P2 and ‖P6 − P ′7‖ = 1. But

P6 = P ′5 − P4 = P5 + (t5 − 1)P4 =− P2 + (t5 − 1)(P3 + (t3 − 1)P2)

=((−1 + (t5 − 1)t3)P2 + (1− t5)P1,

and

P ′7 − P6 = t5P1 + (1− t5)t3P2 = N

(
t5
N

P1 +
(1− t5)t3

N
P2

)
,

where
N = t5 + (1− t5)t3 = 1− (1− t5)(1− t3).

Thus P ′7−P6 equals N times a point on the chord [P1, P2]. If the distance between
P ′7 and P6 has to be 1, we must have 1 ≤ N , which can only be true if one of
t3, t5 is equal to one. Furthermore, the chord [P1, P2] must actually be part of S.
The two conditions can be realized. Each heptagon has two of the vertices being
consecutive vertices of the parallelogram S, three of the vertices midpoints of the
S-edges adjoining the two S-vertices mentioned, and the remaining two vertices of
the heptagon being points with distance 1 chosen on the fourth S-edge.

Lemma 9. A unit circle can have at most four edges of length greater than 1.

Proof.
Assume that we have a unit circle S with six edges of length greater than 1. Try

by alteration of S to increase the smallest edge-length.
Let the edges be [Pj , Qj ] (j = 1, 2, . . . , 6), where, for all j, arg Pj < arg Qj ≤

arg Pj+1, Pj+3 = −Pj , Qj+3 = −Qj , and j is understood modulo 6.
We wish to simplify the unit circle while not decreasing the lengths of the six

edges mentioned. Here we must remember that the unit of length in a particular
direction is found by drawing a halfline L in this direction from the origin. Let P be
the point of intersection L ∩ S. Then

−→
OP is the unit vector in the given direction.

We shall at each step replace S by a new unit circle S′, such that the edges of
length greater than 1 are obtained by translation of the similar edges of S, and such
that the points of S′ are inside or on S. In this way the edges are not changed, but
the unit vectors are either unchanged or shorter than in S. This means that the
lengths of the six edges are not decreased when S is replaced by S′.

At each step we get rid of two “gaps”(arcs from Qj to Pj+1 for some value of
j) in S. In fact, the arc from −Pj+1 (in the counter-clockwise direction) to Qj

is moved by the vector 1
2

−−−−→
QjPj+1, while the arc from Pj+1 to −Qj is moved by

− 1
2

−−−−→
QjPj+1. The new unit circle S′ is strictly inside the old one S, except possibly

at the points ± 1
2 (Qj +Pj+1), which are common to S and S′, if S is linear from Qj

to Pj+1. The new unit circle is easily seen to satisfy the requirements (convexity
of U ′, symmetry with respect to the origin, because two points with sum zero are
mapped onto two points with sum zero).

After three such steps we end up with a unit circle which is a hexagon, and it
suffices to derive a contradiction for unit circles of this type.

We denote the vertices in S by P1, . . . , P6, taken in counter-clockwise order.
Choose the coordinate axes such that arg P1 = 0. Assume that =(P2) ≥ =(P3).
Let the unit vectors in the directions

−−→
P3P2,

−−→
P1P2, and

−−→
P4P3 be

−−−→
OQ32,

−−−→
OQ12, and−−−→

OQ43, respectively.



UNIT DISTANCE PRESERVING MAPPINGS OF THE PLANE INTO ITSELF 11

We have −−−→
OQ43 =

−−→
P4P3/‖

−−→
P4P3‖,

and so =(Q43) < =(P3). This means that Q43 must belong to the open S-edge
(P1, P2). It also follows that arg Q32 > 0, so that Q32 ∈ (P1, P2). Since ‖−−→P3P2‖ > 1,
the point P2 − Q32 must belong to (P3, P2). As Q32 belongs to (P1, P2) and has
distance 1 from P2, we must have P2 −Q32 = Q12.

Consider the line L through O parallel to (P1, P2). It intersects S in the points
±Q12. As we have just seen, Q12 belongs to (P3, P2).

The vector
−−−→
OQ43 is a unit vector in the direction

−−→
P6P1, and since the length of the

latter vector is greater than 1, we must have P1 −Q43 ∈ (P6, P1). But, as we have
seen, Q43 ∈ (P1, P2), and so P1 −Q43 = −Q12. This means that −Q12 ∈ (P6, P1),
while, as shown above, Q12 ∈ (P3, P2), which would make −Q12 ∈ (P5, P6). This
contradiction establishes the lemma.

Properties of unit distance preserving maps

In the following we shall consider only norms for which the unit circle is not a
parallelogram. When it is natural to emphasize this, we shall write “S 6= par”.

Let f map a normed plane C(S) into itself in such a way that any two points
with distance 1 from each other are mapped on two points with the same property.

The set of vertices of a triangle whose sides all have length 1 will be called a unit
triangle. We note that a unit triangle is mapped by f on a unit triangle.

Next we use the curve S′ of Lemma 6 in the following way: Assume that a point
P has distance 1 from a point z + z′ ∈ S′, where, as usual, z and z′ are points of S
with ‖z − z′‖ = 1. If we had f(P ) = f(O), this point would have distance 1 from
each member of the unit triangle {f(z), f(z′), f(z + z′)}, contradicting Lemma 7.

A consequence is

Lemma 10. A mapping f preserving distance 1 cannot map two points whose
distance belongs to the interval (0, 2], onto one point.

Proof. Again we let z and z′ be points of S with ‖z − z′‖ = 1. Then

(6)
‖z + z′‖ ≤ ‖z‖+ ‖z′‖ = 2

‖z + z′‖ ≥ 2‖z‖ − ‖(z − z′)‖ = 1.

A point in S′ cannot also belong to S, since the point O would then have distance
1 from each point in a unit triangle (even if S were a parallelogram, we could not
have S = S′: if z and z′ belong to the same S-edge, we have ‖z + z′‖ = 2. This
concludes the proof of Lemma 6). Thus we have,

(7) R ∈ S′ =⇒ 1 < ‖−→OR‖ ≤ 2.

To prove that f cannot map two points whose distance belongs to the interval
[1, 2], onto one point, it suffices to consider points P whose distance from O belongs
to the half open interval (1, 2].

Then a point Q1 defined by
−−→
OQ1 = (1 + 1/‖−→OP‖)−→OP belongs to S(P ) and lies

outside S′, while the point Q2 ∈ S(P ), defined by
−−→
OQ2 = (1− 1/‖−→OP‖)−→OP , has a

distance from O which belongs to the half open interval (0, 1], and so Q2 is inside
S′. Thus S(P ) intersects S′ and f(P ) 6= f(O).
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We are left with the more difficult case where f is assumed to map two points
whose distance belongs to the interval (0, 1) onto one point.

So we shall assume that 0 < ‖z − z′‖ < 1, and that f(z) = f(z′). This implies
that f(S(z) ∪ S(z′)) ⊂ S(f(z)). We shall show that this is impossible.

For some m ∈ N we shall construct a sequence z0, z1, . . . , z6m+1 in S(z) ∪ S(z′)
with ‖zj−1 − zj‖ = 1 for j = 1, 2, . . . , 6m + 1, and z6m+1 = z0. But we shall have
f(z6m+1) 6= f(z0), a contradiction.

We shall need some facts concerning M = S(z)∩S(z′). We know from Lemma 3
that M is symmetric with respect to the point (z + z′)/2 and has two components.
Each component is a closed interval. Take first the case where this interval reduces
to a point, so that M = {ζ1, ζ2}. We have ζ1 + ζ2 = z + z′, and thus

(8)

2(z − ζ1) =(z − z′) + (ζ2 − ζ1)

2 ≤‖z − z′‖+ ‖ζ2 − ζ1‖
1 <‖ζ2 − ζ1‖.

When the components of M are intervals of non-zero length, the distance from any
point in one component to any point in the other component is 2.

We now choose a particular point ζ1 ∈ M , namely that point where a further
continuation in the positive direction along S(z) would lead into U(z′).

Notation: For simplicity, when talking about points on a unit circle S(z), we
shall say that a point z1 is to the left of another point z2, if arg z1 < arg z2, in other
words, if z2 follows z1 when we move in the counter-clockwise direction along S(z).

Our first strategy: Choose z0 on the arc A of points of S(z) with distance less
than 1 from and to the left of ζ1. Each of the following points is chosen with
distance 1 from the previous point and always proceeding in the counter-clockwise
direction. The point z1 is chosen on S(z′) \ S(z) (according to (8) this is always
possible), and the following points again on S(z), until we for some j have zj ∈ A.
Then zj+1 is chosen on S(z′) \S(z) and so on. We shall try to find values of m and
of z0 with z6m+1 = z0. We shall show below that this may not always be possible,
but then a modified strategy will work.

The sequence Ψ = (zj), chosen as indicated above, satisfies the following condi-
tion:

For j = 1, 2, . . . , 6m we have 1 ≤ ‖zj−1−zj+1‖ ≤ 2, which ensures that f(zj−1) 6=
f(zj+1).

The condition is clearly fulfilled if the three points all belong to S(z). But it
is true also if zj belongs to S(z′). Let, for definiteness, j = 1, and assume that
‖z0 − z2‖ < 1.

Now z′ belongs to the arc from z2 to z0 on S(z1) inside S(z), while ζ1 belongs
to the arc from z0 to z2 on S(z), but also to the arc from z1 through ζ1 on S(z′).
This arc intersects with the above mentioned arc on S(z1) from z2 to z0 in a point
w. Then, according to Lemma 5, 1 = ‖z′ − w‖ ≤ ‖z2 − z0‖ < 1, a contradiction.

In spite of this simplification, the sequence Φ = (Pj), where ∀j : Pj = f(zj), of
points on S(f(z)) can be rather irregular. In fact, we must take into account the
possibility that the sequence contains turning points where, for instance, for some
j we have not only arg Pj > arg Pj−1, but also arg Pj > arg Pj+1 (we have here,
for notational convenience, chosen f(z) as the origin of the image plane). Thus
even if our goal is to show that P0 6= P6m+1, matters become less complicated if
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we decide to show the more general statement that we cannot have P0 = P2p+1 for
any positive integer p.

According to Lemma 8 the equality P0 = P2p+1 is impossible for P = 1, 2, 3, if Φ
does not contain turning points. To tackle the general situation, we use Lemma 9,
from which one can infer that if there are more than two possibilities forPj+1 when
Pj is given, then Pj must belong to an exceptional set E consisting of at most four
points, which we shall call ±R1 and ±R2, and then the interval [O,Pj ] is parallel to
an S-edge of length greater than 1. If we have chosen p minimal with the property
that the equality P0 = P2p+1 is possible, then clearly a turning point in Φ must
belong to E.

For p minimal (which we shall assume in the following) we discuss various cases:
First, assume that neither P0, P1, or P2 belong to E. Since S ∩ S(P1) has only

two members, and one of them is P0, according to Case 1 of Lemma 3 we have
P1 = P0 + P2. Similarly, P3 = P2 − P1 = −P0 /∈ E. In other words, the rest of the
sequence Φ can be found by using the formula (4) for all j ≥ 2. Clearly, Φ is cyclic
with period 6, and we cannot have P0 = P2p+1.

Next, assume that there is a j ≥ 1 with Pj ∈ E, but that E has only two
members (E = {±R1}, say). Then we have a choice between Pj+1 = Pj−1 + tj+1Pj

and Pj+1 = Pj − Pj−1 + tj+1Pj . In the first case tj+1 must be non-zero, and in
both cases 1 + |tj+1| may at most equal the length of the S-edge to which [O,Pj ]
is parallel, in particular |tj+1| < 1. In any case, Pj+1/Pj cannot be real, and so
Pj+1 /∈ E. Thus we must have Pj+2 = Pj+1−Pj , which cannot belong to E either,
so that Pj+3 = Pj+2 − Pj+1 = −Pj , which again belongs to E.

But then Pj+3n = (−1)nPj for all integers n (also negative) with j + 3n ≥ 0.
And, according to the above, Pj+3n+1 equals either Pj+3n−1 + tj+3n+1Pj+3n or
Pj+3n − Pj+3n−1 + tj+3n+1Pj+3n, while Pj+3n+2 = Pj+3n+1 − Pj+3n.

It also follows that a ratio of the form Pj+3n1+k/Pj+3n2 , where k = 1 or 2,
cannot be equal to 1 (it is not even real).

It suffices then, to establish the contradiction, to consider equality of two points
Pj+6n1+k1 and Pj+6n2+k2 , where {k1, k2} ∈ {{1, 4}, {2, 5}, {1, 2}, {4, 5}}. In all
these cases the point P = Pj+6n1+k1 = Pj+6n2+k2 must have distance 1 from both
points±R1. But if, for instance, Pj+6n+1 has distance 1 from Pj+6n+3, the existence
of the four points O, Pj+6n+1, Pj+6n+2, and Pj+6n+3 contradicts Lemma 7, since,
according to assumption, S 6= par. A similar argument can be applied to the other
cases.

The general situation when E = {±R1,±R2}, is considerably more complicated.
We first note, however, that if we have three consecutive points not in E, then

no member of Φ is contained in E. This follows from (4), which can also be
read Pj−1 = Pj − Pj+1, since {Pj , Pj+1, Pj+2} ∩ E = ∅ then is seen to imply
Pj−1 = −Pj+2 /∈ E.

In the following we shall assume that Φ contains members of E.
The following observations may be of interest:
Let, for some j, Pj and Pj+1 be outside E. Then, as above, two applications of

(4) give Pj−1 = −Pj+2, where now the two points Pj−1 and Pj+2 both belong to
E.

For no j can we have Pj+1 ∈ {Pj ,−Pj}. This is due to the fact that ‖Pj−Pj+1‖ =
1, since, for instance, Pj + Pj+1 = 0 would imply

1 = ‖Pj − Pj+1‖ = ‖ − 2Pj+1‖ = 2,
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which, as an equality in the real number field, is untrue.
For no j can we have Pj+2 ∈ {Pj ,−Pj}. First, the equality Pj = Pj+2 contradicts

the minimality of p. Secondly, the equality Pj = −Pj+2 would imply that the point
Pj+1 should have distance 1 from the three collinear points O and ±Pj , which,
according to Lemmata 1 and 4, would be incompatible with our assumption that
S 6= par.

More generally, for any integers j and n with 0 ≤ j < j + 2n ≤ 2p, we cannot
have Pj+2n = Pj , since this would contradict the minimality of p.

For no j can we have Pj = Pj+3, since then the four points O, Pj , Pj+1, and
Pj+2 would be the vertices of a complete unit distance graph, contradicting Lemma
7.

It follows from the above that p ≥ 2. It is also clear that if Pj ∈ E (let, for
definiteness, Pj ∈ {±R1}), and Pj+1 ∈ E also, we must have Pj+1 ∈ {±R2}, while
then Pj+2 cannot belong to E at all. Thus we can have at most two consecutive
points belonging to E.

Another standard argument we shall use in the following, is that we cannot have

‖Pj − Pk‖ = ‖Pj + Pk‖ = 1

for any points Pj , Pk on S. In fact, Pj would then have distance 1 from each of the
three collinear points O,±Pk, which would contradict Lemma 4, since S 6= par.

Assume that we have P0 = P5.
If neither of P2, P3 were members of E, we would have P4 = −P1. Then

‖P0 − P1‖ = ‖P0 + P1‖ = 1,

an impossibility.
Assume now that both P2 and P3 are members of E. Then none of the other

points are. And so we have P0 = P1 + P4, and P2 = −P4, which is impossible.
Let P2 ∈ E, and P3 /∈ E. If P4 /∈ E, we have P0 = P5 = −P2, impossible.

Otherwise P4 ∈ E \ {±P2}. Since, as we have seen, P4 6= −P1, none of the other
points belongs to E. Then, by an argument similar to that above, P2 = −P4, a
contradiction.

The situation where P3 ∈ E, and P2 /∈ E is handled by a procedure symmetrical
to that above.

This concludes the proof that p ≥ 3.
It will be necessary to check also the cases p = 3 and p = 4, which is done below.

That this also suffices, is seen from the following argument:
As we know, there can be a ”gap”of at most two ordinary points between two

exceptional points, and we cannot have two such gaps after another, since this gives
a cycle of six points which can be eliminated. Thus the longest index-distance D
possible between two exceptional points, of which one is a repetition of the other,
is 3 + 2 + 3 + 2 = 10. Let p ≥ 5, and let Pj = Pj+D for some j. Then the original
cycle with 2p + 1 elements is the union of an even and an odd cycle. We can then
discard the even cycle, which would contradict the minimality of p.

Before we embark on the detailed investigation of the two mentioned values of
p, we mention a simple observation: we noted above that we could not have two
consecutive gaps of non-exceptional points of length 2. But we cannot have two
consecutive gaps of length 1 either. Assume to the contrary, that P0, P2, and P4
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belong to E, while P1 and P3 do not. Then we can put P0 = R1 and P2 = R2.
We cannot have P4 = R1, since this would give a cycle of length 4 contradicting
the minimality of p. If we had P4 = −R1, we would have P1 = R1 + R2 and
P3 = R2 −R1, and we would get our usual contradiction in norm.

Now assume that we have a cycle of length 7 or 9.
First, let the maximal gap be 1 (it is clear that it cannot be 0). We may then

put P0 = R1 and P2 = R2. As we just showed, we cannot have P3 /∈ E.
But if P3 ∈ E, we must have P3 = −R1. Then P4 /∈ E, and P5 ∈ E. And so

P5 = −R2. We cannot have P6 = P0, and so P6 cannot belong to E. But this is
again the excluded possibility.

If the maximal gap is 2, we again let P0 = R1, while now both points P1 and P2

are outside E. Then P3 = −R1, and we must consider two cases:
In the first case, P4 ∈ E. We put P4 = R2. Then P5 and P6 are not in E, and

P7 = −R2 (excluding P0 = P7). If p = 4, i.e. P9 = P0 = R1, we cannot have
P8 ∈ E, and so P8 = R1 −R2. But P4 − P3 = R1 + R2, and we have incompatible
norms.

In the second case, P4 /∈ E. But P5 must belong to E, and we may put P5 = R2.
To avoid a cycle of 6, we cannot have P6 in E. As we have seen, we cannot have P7

in E either, and so P8 = −R2 (again excluding p = 3). But now P9−P8 = R1 +R2,
while P4 = R2 −R1, again an impossibility.

The sequence Φ having been taken care of, we look at the sequence Ψ = (zj).
The important thing is here that when z0 runs through the arc A, we want, for a
fixed vakue of m, the endpoint z6m+1 to run through a similar (connected) arc. The
only difficulty is here the values of zj for which zj+1 is not uniquely determined.
We must then keep zj fixed while zj+1 runs through the possible values. It follows
from earlier results that then each succeeding zk (fixed k) traces a (continuous)
curve.

We must give a more detailed prescription for the elements of Ψ. Note that the
arc A is outside U(z′). For a given z0 ∈ A we let z1 be the point of S(z′) where
S(z0) enters the disk D(z′). Since S(z) from ζ1 onwards has an arc inside S(z′),
and since the distance between the two components of M is greater than 1, the
continuation of S(z0) beyond z1 enters S(z) later, at a point z′1.

We define the points z2 = z + z1 − z0 and z′2 = z + z′1 − z0. Both points belong
to S(z), and

arg(z2 − z) = arg(z1 − z0) < arg(z′1 − z0) = arg(z′2 − z).

Thus, the journey z0, z1, z2 is really a detour compared to z0, z
′
1, z

′
2. This means

that
arg(z6 − z) < arg(z0 − z).

Obviously, by choosing z0 sufficiently close to the left endpoint of A, we can obtain
z6 as close to z0 as we wish. However, this is not at all what we want. We would
rather that by suitable choice of z0 we could have

arg(z7 − z) = arg(z0 − z),

as this would solve our problem with m = 1.
But if this is not possible, then any choice of z0 ∈ A yields

arg(z7 − z) > arg(z0 − z),
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and either z6 or z7 belongs to A.
Let us now start with an arbitrary point z0 ∈ A. The points z6m (m = 0, 1, . . . )

define a monotonically decreasing sequence (arg(z6m− z)). If, for some m, we have
‖z6m − z0‖ ≥ 1, we may, by modification of z0, obtain z6m+1 = z0.

However, there is the possibility that the sequence (z6m) gets stuck at the left
endpoint amin of A, and we must modify the arc A. The new arc is called A′.
It is obtained by moving A somewhat in the positive direction along S(z). In
particular, the distance between the endpoints of A′ is 1. We must still have the
distance between the right endpoint of A′ and the other component of M (the one
that ζ1 does not belong to) greater than 1. Otherwise everything works as before,
except that the sequence (z6m) cannot now converge towards a point in the closure
of A, and it is possible to obtain z6m+1 = z0. In fact, if the original arc A does not
work, for every z0 ∈ A we shall have

arg(amin − z) < arg(z6m − z) < arg(z0 − z)

for all m ∈ N, and limm→∞ z6m = amin. We then define the point amid ∈ A as the
point obtained as z6 if z0 = ζ1. When z6m traces the arc A \ A′, z6m+1 traces the
arc A′ \A, and z6m+7 runs through an arc B from amid to a point bmid to its right.
If we choose the point z0 in the interior of B, for a certain sufficiently large m we
shall have z6m+7 to the left of z0. Keeping m constant, we let z0 move to the left.
Then also z6m moves to the left, but does not get close to amin. Thus z6m+7 does
not approach amid and so must equal z0 at some point, q.e.d.

To simplify, origins are, in the following, chosen such that f(0) = 0. However,
for arbitrary z0 ∈ C we may consider the function g(z) = f(z0 + z) − f(z0). We
have g(0) = 0, and g also preserves distance 1. And so, any result arrived at for
f is valid for g. Thus we obtain the “long form”of the result, containing the extra
parameter z0.

We also have

Lemma 11. Let z and z′ be arbitrary points. Let the mapping f preserve distance
1. Then ‖f(z)− f(z′)‖ ≤ max{−[−‖z− z′‖], 2}. If, in addition, z has the property
that there are arbitrary large positive numbers N such that f(Nz) = Nf(z), then
‖f(z)‖ ≤ ‖z‖.

Proof.
If ‖z − z′‖ ≤ 2, we can choose a point z′′ ∈ S(z) ∩ S(z′). Then

‖f(z)− f(z′)‖ ≤ ‖f(z)− f(z′′)‖+ ‖f(z′′)− f(z′)‖ = 2.

Otherwise we can define the number n ∈ N such that n + 1 < ‖z′ − z‖ ≤ n + 2
(in fact, n = −[2 − ‖z′ − z‖]), and the points z(j) = z + j(z′ − z)/‖z′ − z‖ for
j = 0, 1, . . . , n. So ‖z′− z(n)‖ = ‖z′− z‖−n ∈ (1, 2]. Then, according to the above,
‖f(z′) − f(z(n))‖ ≤ 2, and as ‖f(z) − f(z(n))‖ ≤

∑n
j=1 ‖f(z(j) − f(z(j−1))‖ = n,

we have indeed ‖f(z)− f(z′)‖ ≤ max{−[−‖z − z′‖], 2}.
Dividing the inequality ‖f(Nz)‖ ≤ ‖Nz‖+ 2 by N , and letting N tend towards

infinity, we see that the second part of the lemma follows.

Let the unit circle S contain the segments [a, b] and [−b,−a].
For simplicity, the unit circle in the image plane is also denoted S. We have

f(S) ⊂ S, and, according to Lemma 10, the restriction to S of f is injective.
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The following remark will be useful in the following:
Because of the local injectivity of f , the image of a non-empty interval I has

cardinality c, in particular contains more than two points, which may permit us
to use Lemma 3 when considering mappings of intervals into intersections of unit
circles.

We have [a, b] = S ∩ S(a + b), and so

(9) f([a, b]) ⊂ S ∩ S(f(a + b)).

Thus an S-edge [a, b] is mapped into either an S-edge ([c, d], say) or the union of
two S-edges ([c, d] and [−d,−c]). This is still a statement about the local properties
of the mapping f . To go beyond this we can use the long form of (9), which can be
written

(9’) f([z0 + a, z0 + b]) ⊂ S(f(z0)) ∩ S(f(a + b + z0)).

We are particularly interested in putting z0 = t(b− a), with real t, which would
enable us to say something about the mapping by f of the line through O and
b− a. If |t| is small, the intervals [a, b] and [z0 + a, z0 + b] overlap, and so do their
images. Then at least one edge of S(f(z0)) (namely either [f(z0) + c, f(z0) + d] or
[f(z0)−d, f(z0)− c]) overlaps with [c, d], which implies that f(z0) belongs to either
the line L through O parallel to [c, d] or to one of the two lines parallel to L in
distance 2 from this line. But this is in fact true for any z0 of the form t(b−a) with
real t. We first see by induction that such a point must have an image belonging to
a line parallel to L in a distance from L which is an even integer. Next we consider
the particular case z0 = e, where e = (b − a)/(‖b − a‖). Here e ∈ S, and so f(e)
must belong to L. The point f(2e) has distance 1 from f(e), is different from O,
and belongs to L. But then we must have f(2e) = 2f(e). By induction we see that
all points f(ne) with n integral belong to L, and that we have

(10e) f(ne) = nf(e) for n ∈ Z.

Any point t(b− a) with t real has distance less than 1 from some point ne with n
integral. According to Lemma 11 its image has distance at most 2 from the point
f(ne) and so from the line L, which is what we wanted to prove.

In the following we shall meet vectors w satisfying a condition (10w), which is
just (10e) with e replaced by w. Let us consider such a vector w. First we shall
show that if w can be shown to satisfy

(11w) f(−w) = −f(w),

then (10w) follows.
Actually, the long form of (11w) can be written

(11′w) f(z0 + w) + f(z0 − w) = 2f(z0).

Put z0 = (n± 1)w here to prove (10w) for |n| ≥ 2 by induction.
Next, we consider the long form of (10w), which is

(10′w) f(z0 + nw)− f(z0) = n(f(z0 + w)− f(z0)) for n ∈ Z.
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Replace here z0 with z′0 and take the difference between the new equation and
(10′w):
(12w)

f(z′0 + nw)−f(z0 + nw)

=f(z′0)− f(z0) + n((f(z′0 + w)− f(z′0))− (f(z0 + w)− f(z0))).

According to Lemma 11 the norm of the lhs of (12w) is at most max{‖z0− z′0‖+
1, 2}, which is independent of n. Thus, taking norms in (12w)) and dividing by n
gives in the limit n →∞ that

(13w) f(z′0 + w)− f(z′0) = f(z0 + w)− f(z0),

i.e. f(z0 + w)− f(z0) is independent of z0 and so equals f(w). More generally,

(14w) f(z0 + nw) = f(z0) + nf(w) for n ∈ Z.

We now consider a special point z1, characterized by the equations

(15) ‖z1‖ = ‖z1 + e‖ = 1.

Actually any point in the intersection M = S∩S(−e) can be taken for z1. However,
only in the case where ‖b − a‖ > 1 does M consist of more than two points. If z1

satisfies (15) then also z′1 = −z1 − e does. Using (14e) with n = 1, the image of z1

satisfies

(16) ‖f(z1)‖ = ‖f(z1) + f(e)‖ = 1.

Thus f(M) belongs to a set N = S ∩ S(−f(e)). In particular, because of the local
injectivity of f , we must have ‖d− c‖ > 1, if ‖b− a‖ > 1.

If ‖d− c‖ ≤ 1 (implying ‖b−a‖ ≤ 1), and if f(z1) is a solution of (16), −f(z1)−
f(e) is the other one. But then injectivity implies that

(17) f(−z1 − e) = −f(z1)− f(e) i.e. f(−z1) = −f(z1),

and so (14z1) is satisfied.
A similar analysis can be carried through for all S-edges. One of the implications

of the results above is that the direction of the pair of S-edges into which the edge
[a, b] is mapped, is determined by ±f(e). Taken together with the injectivity of the
restriction of f to S, this means that the edge [−b,−a] is mapped into the same pair
of edges ±[c, d] as [a, b], while any other edge-pair is mapped into a different edge-
pair. Actually (see (14e)), any line parallel to [a, b] is mapped into a line parallel
to [c, d]. We can say that f induces an injection of the set of pairs of S-edges into
the set of pairs of S-edges. We also saw that the set of pairs of S-edges longer than
1 were mapped into the similar set of edge-pairs.

We shall say that a point z on S is of type 1 if it has the properties of points z1

and z1 + e above, i.e. if there is a point z′ ∈ S such that ‖z − z′‖ = 1, with z − z′

parallel to an S-edge which is mapped into a pair of S-edges of length equal to or
less than 1. The point z will then satisfy the equation (14z).
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A point z ∈ S will be said to be of type 2 if it has the properties of points z1

and z1 + e above, but if the corresponding S-edge has length greater than 1. Here
both z an z′ belong to the S-edge.

The remaining points on z ∈ S will be said to be of type 3. Let z′ ∈ S be a point
with distance 1 from such a point z. Put z′′ = z − z′. Then ‖z′′‖ = ‖z′′ − z‖ = 1,
and z′′ 6= z′. Furthermore, ‖−z′‖ = ‖z′′− (−z′)‖ = 1, and we see that the hexagon
with vertices z′, z, z′′, −z′, −z, and −z′′ is inscribed in S and has all sidelengths
equal to 1. Now consider the images of these points. We have ‖f(z)‖ = ‖f(z′)‖ =
‖f(z′) − f(z)‖ = 1. Since we have required that the image plane should have the
same metric (in fact the same S) as the original plane, the injection of the (finite!)
set of S-edges of length greater than 1 into the similar set of S-edges is in fact a
bijection. Thus, if, for instance, the vector f(z′) were parallel to a long S-edge
[c, d], it would be equal to the image of one of the two unit vectors ±e parallel
to the corresponding long S-edge [a, b]. Because of the injectivity of f on S, this
would give z′ = ±e, and so z − z′′ should be parallel to a long S-edge, contrary to
the definition of type 3 points. Thus the image of the mentioned regular inscribed
hexagon is again a regular inscribed hexagon, and we have f(−z) = −f(z), so that
(14z) is valid also for points z of type 3.

Since all S-edges have length less than 2 (otherwise S would be a parallelogram),
there is, on each S-edge [a, b] of length greater than 1, an interval I of non-zero
length containing the midpoint (a + b)/2, such that each point in I is of type 1 or
3. We shall use this later.

We have

Theorem 1. We can find a linear transformation φ such that φ(f(z)) = z for all
points z ∈ S.

Proof.
The set of points whose type is 1 or 3, has cardinality c. Choose two of them

(w1 and w2) as basis over the reals. Let z be an arbitrary point of type 1 or 3. We
then have an expansion

(18) z = a1w1 + a2w2

with real numbers a1 and a2.
If these numbers are rational, (18) can be rewritten as

(18’) dz = n1w1 + n2w2

with integers d, n1 and n2. Using (14w) with w = z, w1, or w2, we find that

(18”) df(z) = n1f(w1) + n2f(w2),

so that in this case the linear relation (18) is inherited by the images.
But this is, as we shall see, true in general. Starting from (18) we use a well

known argument which runs as follows:
We define the function g from N into [0, 1]2 by

(19) g(q) = (qa1 − [qa1], qa2 − [qa2]).
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Dividing [0, 1]2 into N2 subsquares of the form [(p− 1)/N, p/N ]× [(k− 1)/N, k/N ]
we see that we can choose a subsquare such that it contains two points g(q1) and
g(q2) with 1 ≤ q1 < q2 ≤ N2 + 1. Thus

‖(q1 − q2)z − ([q1a1]− [q2a1])w1 − ([q1a2]− [q2a2])w2‖ ≤ (1/N)(‖w1‖+ ‖w2‖).

This means that we can find a sequence of triples (mN , nN , pN ) of integers, such
that the sequence tN = mNw1 + nNw2 + pNz tends towards zero. The same is,
according to the second part of Lemma 11, true for the sequence of numbers f(tN ),
and even faster for the sequence f(tN )/pN , which, in the limit N →∞, proves our
point.

Thus if the linear mapping φ is chosen such that

(20) φ(f(w)) = w

for the two basis points, this equation is valid also for the rest of the points.
Consider now a point z of type 2. Let it belong to an interval [a, b] of length

greater than 1, and let I = (b−e, a+e) be the interval, contained in [a, b], of points
of type 1 or 3. Here e = (b− a)/‖b− a‖. The length of I is 2− ‖b− a‖.

Let z ∈ [a, b] \ I.
Define the positive integer

n = [‖z − (a + b)/2‖/(2− ‖b− a‖)] + 1.

It is then possible to find two points d1 and d2 in I such that

‖d2 − d1‖ = ‖z − (a + b)/2‖/n,

and such that

(21) z = (a + b)/2 + n(d2 − d1).

Using the relevant equations (14w) and (21) we see that (11z) and thus (14z) is
true. We can then repeat the argument above for points of type 2. We conclude
that (20) is satisfied for all z ∈ S.

Finally we have

Theorem 2. The Beckman–Quarles Theorem is valid for any normed plane, except
when the set of points with norm equal to one is a parallelogram.

Proof. Any point in the plane is a sum of points belonging to S (see, for instance,
the proof of Lemma 11). Thus, with the notation of Theorem 1, the mapping φ ◦ f
is simply the identity, q.e.d.

Concluding remarks

When I, during a visit at Université de Montréal in 1974, discussed the con-
struction of Figure 1 with Hwang, he said that he thought he had seen it before. I
think that he was right, and that most of the lemmata proved in the present paper
are probably what is commonly called “folklore”. Nevertheless, I think it is a good
thing to have proper proofs published (I have later seen that many of these simple
truths have been published by Chilakamarri (see [3])). However my main theorem
is, as far as I know, not “well known”and not earlier published.

This paper was slightly modified on 16 July 2014.
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