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Abstract. This is a personal version of Connes’s results. I have tried to complete

the proofs.

Introduction

The work referred to is contained in the three papers ([1], [2], and [3]), of which
[3] is the only one containing something resembling proofs.

Polynomials with all zeros outside the unit circle

This section is based on [3, page 18-01].
Let P (x) ∈ C[x] have all zeros outside the unit circle.
We consider the set of submultiplicative seminorms z 7→ ‖z‖ on the algebra

A = C[x]/P (x).
Notationally we shall not distinguish between a polynomial in C[x] and its canon-

ical image in A. However, it is convenient to distinguish between the scalar (i.e.
the complex number) 1 and the monomial e, whose set of values equals {1}.

An obvious consequence of the submultiplicity is the fact that if there is an
element z ∈ A with ‖z| 6= 0, i.e. if the seminorm is non-trivial, then ‖e‖ ≥ 1.

Moreover, if the seminorm is non-trivial, its zero-set is an ideal generated by a
polynomial Q, which must divide P .

Let Q have a zero α. Put Q(x) = (x − α)Q1(x). Then

0 = ‖Q(x)‖ = ‖(x − α)Q1(x)‖,

so that
|α|‖Q1(x)‖ = ‖xQ1(x)‖ ≤ ‖x‖‖Q1(x)‖.

Since ‖Q1(x)‖ > 0, we obtain ‖x‖ ≥ |α| > 1.
A submultiplicative seminorm is defined by

(1) ‖z‖ = inf{

n∑

j=0

|bj | | z =

n∑

j=0

bjx
j}.

For the monomial x we find ‖x‖ ≤ 1, which in combination with the remarks
above shows that (1) is trivial.
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In particular, ‖e‖ = 0, and so there exists a polynomial
∑n

j=0 ajx
j which is a

multiple of P (x) so that |1− a0| +
∑n

j=1 |aj | < 1. Thus,

(2) |a0| ≥ 1 − |1 − a0| >
n∑

j=1

|aj |.

Conversely, if P (x) has a zero θ with |θ| ≤ 1, for every multiple
∑n

j=0 ajx
j of

P (x) we have

−a0 =
n∑

j=1

ajθ
j ,

implying

(3) |a0| ≤

n∑

j=1

|aj |,

making the condition that some multiple
∑n

j=0 ajx
j of P (x) satisfies (2) a necessary

and sufficient for P (x) to have all zeros outside the unit circle.

Weak orderings of fields finite over Q

Let K be a field finite over Q. Its elements are algebraic numbers.
A weak partial ordering ω is defined by the corresponding set of positive numbers

(also denoted by ω). This set must satisfy the following requirements (and only
these):

(1) Its intersection with Q does not contain the number 0.
(2) If x and y are members of ω, so are all numbers λx + µy, where λ and µ

are positive rational numbers.
(3) If x and y are members of ω, so is the number 1/(1/x + 1/y).

For simplicity, the statement x > 0 will be considered synonymous to x ∈ ω.
Assume that we are given n numbers ωj (j = 0, 1, . . . , n − 1) in ω with the

property that their rational linear combinations span the module L = ω − ω. We
shall assume that these n numbers form a subset of ω which is maximal with respect
to the property of being linearly independent over Q.

Any number x ∈ L can be written x =
∑n−1

j=0 ξjωj , where ∀j : ξj ∈ Q.

Put z =
∑n−1

j=0 ωj . Then z > 0, and for any x ∈ L there exists a λ ∈ Q+, such
that λz > x.

We shall show that L = zK ′, where K ′ is a subfield of K.
We consider ω′ = ω/z, which is a weak partial ordering iff ω is.
And so

x ∈ ω′ =⇒
1

1
x

+ 1
λ−x

= x(1 − x/λ) ∈ ω′,

i.e. x2 ∈ L′ = ω′ − ω′.
Let x ∈ ω′, y ∈ ω′. Then

(4) xy =
1

2
((x + y)2 − x2 − y2) ∈ L′.
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Hence, x ∈ L′, y ∈ L′ =⇒ xy ∈ L′. This means that the Q-module L′ is in fact a
ring. Since L′ is a subring of the field K and of finite dimension over the field Q,
it is easy to show that L′ is itself a field (in fact, the inverse of an element x ∈ L′

belongs to Q[x] and so to L′).
We shall show that a given partial weak ordering ω of K can always be completed

to a total weak ordering of K.
However, it follows from the above that the real problem is to complete the

partial weak ordering ω′ of L′ = K ′ to a total weak ordering of K ′. So, in the
following we shall simply remove the apostrophes and directly tackle the problem
of extending the given partial ordering ω of L = K = Q[x]/p, where p ∈ Q[x] is
irreducible.

Let the zeros of p be θj (j = 1, . . . , r + 2c), where θj is real for j = 1, . . . , r

and has positive imaginary part for j = r + 1, . . . , r + c, while θr+c+k = θ̃r+k for
k = 1, . . . , c.

Each element q of K can be written as a polynomial of degree at most n − 1,
where n = r + 2c is the degree of p. Each isomorphism φ of K into C has the form
φ = φj , where φj(q) = q(θj) for some j ∈ {1, . . . , n}.

It is practical to collect these isomorphisms into a single isomorphism φ of K
into the ring A = Rr × Cc. Here we have used the fact that q is a real polynomial,
so that only the r + c first isomorphisms are needed to characterize q.

Then q can be found by means of the Lagrange interpolation formula, for in-
stance, calculating q(θr+c+k) as the complex conjugate of q(θr+k) for k = 1, . . . , c.

This also shows that φ(K) is dense in A. In fact, to each point in A we can find
a polynomial q0 ∈ R[x] of degree at most n − 1 corresponding to it. But q0 can be
arbitrarily well approximated by polynomials in Q[x].

The set φ(ω) gives a partial ordering of A.
Consider the images ωj = φj(ω) for j = 1, . . . , r + c.
In the real case (j ≤ r) the closure of ωj must be either one of the semiaxes

[0,±∞) or the whole of R; this follows directly from condition (2) for ω.
In the non-real case (r + 1 ≤ j ≤ r + c) the angle of the smallest closed cone

containing ωj either is at most π, or is equal to 2π, because of condition (2).
So a natural first step towards a total ordering of K is to replace φ(ω) by the

interior ωA of its completion in A. This is again a partial weak ordering of A.
Note, in particular, that although 0 belongs to the completion of φ(ω) in A, it is a
boundary point and so does not belong to ωA.

More information about ωA gives Connes’s

Lemma ([3, p. 18-08]). The partial ordering ωA does not depend on those coordi-
nates for which the projection of ω has as closure the whole field C or R.

Proof. Assume, for definiteness, that ωA contains the points x1 with first coordinate
ξ and x2 with first coordinate −ξ, chosen such that the other coordinates of both
x1, x2 and x1 + x2 are non-zero. Then ωA contains also the limit for ε → 0 of the
expression

(2ε)/((1 + ε)/x1 + (1 − ε)/x2),

which is the point with first coordinate ξ and the other coordinates equal to 0. In
fact, all points with the first coordinate a real multiple of ξ and the (n − 1)-tuple
of the remaining coordinates a non-negative linear combination of those of x1 and
x2 are contained in ωA.
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Consider the case where there is no value of j, for which ωj is restricted to a
semiaxis or a halfplane. Then the closure of φ(ω) is the whole of A, in particular, 0
should be an interior point in this closure and so belong to ωA, which is impossible.

Thus there is at least one number j, for which ωj is not the whole field. Let
j = j0 be such a number.

There are three cases:
1) If j0 ≤ r, we have ωj0 equal to either [0,+∞) or [0,−∞), and we can simply

extend ωA by replacing it with the product Rj0−1R+Rr−j0Cc or the one obtained
by replacing R+ with R− in this expression.

If j0 > r, we first determine an open halfplane Π containing the interior of ωj0 .
Then we introduce two real rectangular coordinates xj0 and yj0 , such that Π equals
xj0 > 0. If now

2) ωj0 has points on both of the yj0 -semiaxes, the lemma shows that ωA does
not depend on yj0 , and we just extend ωA by replacing it with the product

RrCj0−r−1ΠCr+c−j0 .

The same applies if ωj0 has points on none of the yj0 -semiaxes.
If, however,
3) ωj0 has points on at most one of the semiaxes from 0 to ∞ bounding Π, the

product RrCj0−r−1ΠCr+c−j0 does not suffice as extension of ωA. We will have to
add a set containing the remaining points of ωA. To do this we consider the other
coordinates of those points of ωA, for which coordinate number j0 belongs to the
relevant semiaxis R±. A new coordinate j1 must receive the same treatment as j0

above.
We find that the total weak orderings ω continuing the given one are lexographi-

cal corresponding to some ordering of k (say) of the non-real coordinates, according
to the following scheme:

An element x ∈ K is positive iff one of the following possibilities occur,
1) for some m < k: xj0 (x) = · · · = xjm−1

(x) = 0, xjm
(x) > 0,

2) xj0 (x) = · · · = xjk
(x) = 0,±xjk+1

(x) > 0,
where the coordinate with number jk+1 is real, and the appropriate sign is taken.

Applications of weak ordering

See [3, pages 18-07 and 18-08].
Let x1, . . . , xn be variables. Define Ω(x1, . . . , xn) as the set of rational functions

obtained from x1, . . . , xn by applying the procedures (2) and (3) for positive sets a
finite number of times.

Let u1, . . . , un be algebraic numbers. They can be represented by polynomials
in some field K = Q[x]/q, where q ∈ Q[x] is irreducible.

The conjugate systems to (u1, . . . , un) will be denoted by (u
(p)
1 , . . . , u

(p)
n ).

Theorem 1. A necessary and sufficient condition for the existence of a function
F ∈ Ω(x1, . . . , xn) such that F (u1, . . . , un) = 0 is that, for every p, 0 belongs to the

(real) convex hull of u
(p)
1 , . . . , u

(p)
n .

Proof. If F (u1, . . . , un) = 0, then also, for all p, F (u
(p)
1 , . . . , u

(p)
n ) = 0, and so 0

belongs to the convex hull of u
(p)
1 , . . . , u

(p)
n .
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Conversely, assume that for all F ∈ Ω(x1, . . . , xn) we have F (u1, . . . , un) 6= 0,
and let ω be a set containing u1, . . . , un. Then F (u1, . . . , un) ∈ ω for all F ∈
Ω(x1, . . . , xn). But then, according to our assumption, ω satisfies all conditions
necessary to qualify it as a weak partial ordering. And so, as we have seen, there
is a p for which ωp is contained in an open halfplane. And then 0 does not belong

to the convex hull of the u
(p)
1 , . . . , u

(p)
n , q.e.d.

Examples:

1) A polynomial in Q[x] whose zeros are all real and negative divides a rational
function F (x, 1), where F ∈ Ω(x1, x2).

2) A polynomial in Q[x] whose zeros all have negative real part divides a rational
function F (x, 1/x, 1), where F ∈ Ω(x1, x2, x3).

3) Let P1, . . . , Pk be points in C, algebraically members of the field κ = Q[i] and
geometrically corners in a convex polygon P1 . . . Pk.

Then a complex number z is a zero of a polynomial in κ[x] with all zeros in the
given polygon iff there is a function F ∈ Ω(x1, . . . , xk) such that F (z −P1, . . . , z −
Pk) = 0.

In fact, a conjugate of the k-tuple (z − P1, . . . , z − Pk) either has the form
(zj − P1, . . . , zj − Pk) (where zj is another zero of the equation satisfied by z) or

the form (z̃j − P̃1, . . . , z̃j − P̃k).

4) Assume now that u1, . . . , un all belong to the same open halfplane, but that

this is not true for any other u
(p)
1 , . . . , u

(p)
n except ũ1, . . . , ũn.

Let γ denote the smallest closed cone containing the origin and u1, . . . , un.

Let G(u1, . . . , un) be a rational homogeneous function of degree 1 with ratio-
nal coefficients and with its value contained in γ. Then G(u1, . . . , un)/u1 is a
member of the field ω − ω, where ω is an arbitrary weak partial ordering con-
taining 1, u2/u1, . . . , un/u1, in fact even a member of ω (note that because of our

assumptions about u
(p)
1 , . . . , u

(p)
n it is not necessary to consider the other projec-

tions). Defining ω as the set of values F (1, u2/u1, . . . , un/u1) obtained by let-
ting F (x1, . . . , xn) run through Ω(x1, . . . , xn), we find that there is a function
F (x1, . . . , xn) in Ω(x1, . . . , xn), such that G(u1, . . . , un) = F (u1, . . . , un).

Example:

If θ is a positive algebraic number whose conjugates all have negative real part,
we can put (u1, u2, u3) = (θ, 1, 1/θ) and use the result just proved: We can choose
positive rational numbers λ1 and λ2, such that the algebraic number u, defined by

θ = λ1 × 1 +
1

λ2 × 1 + 1/u

is positive. Then u is a function of the type G above, and as u is positive, we
conclude that there is a function F ∈ Ω(x1, x2, x3) such that u = F (θ, 1, 1/θ).
Thus,

(12) θ = λ1 +
1

λ2 + 1/F (θ, 1, 1/θ)
.

The case where θ is a positive algebraic number whose conjugates all are negative
real can be treated similarly: We have θ = F (θ, 1), where F ∈ Ω(x1, x2).
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Rational polynomials

with exactly one zero inside the unit circle

Theorem 2. A necessary and sufficient condition for θ to be an algebraic number
with |θ| < 1 and with all conjugates outside the unit circle is that there are rational
numbers a0, . . . , an such that

∑n

j=0 |aj | < 1 and

θ =
n∑

j=0

ajθ
j .

One may choose the aj such that a1 = 0 and only p of them are different from
0. Here p is the number of conjugates of θ.

Proof. The sufficiency is obvious (Rouché).
To prove the necessity, let q ∈ Q[x] be the irreducible polynomial of which θ is

a zero.
As above we consider the field K = Q[x]/q and its isomorphisms into C.
As in the first section (but with C[x] replaced with Q[x]) we can define the

seminorm (1).
As in the second section we consider the isomorphism φ of K into the ring

A = Rr × Cc, where r is the number of real zeros and c the number of zeros with
positive imaginary part. We have r + 2c = p + 1.

But clearly the isomorphism φ is the restriction of a homomorphism of C[x]/q
onto A, defined nominally in the same way. Similarly for the seminorm (1) (where
now n is an unlimited positive integral parameter), since Q is dense in C.

We can consider the extended seminorm as a seminorm on A. The set of elements
of A on which the seminorm vanishes is an ideal and so is characterized by a set
of coordinates vanishing. To find out what this set is, we consider the unit ball
B ⊂ K. A linear form vanishes on all elements with seminorm zero iff the image
of B is bounded. Thus the seminorm vanishes on the coordinate corresponding to
a particular zero of q iff this zero has absolute value less than or equal to 1. But
this means that the seminorm does not depend on the other coordinates. In the
case we consider, we must have ‖p‖ = k|p(θ)|. Since ‖e‖ = 1, we have k = 1. Thus
‖x‖ = |θ| < 1, and the theorem follows.

That p non-zero coefficients suffice, is a consequence of Carathéodory’s Theorem
and a limit-argument, and it is easily checked that we can choose a1 = 0.
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2. , Ordres faibles et localisation de zéros de polynomes, C. R. Acad. Sc. Paris 269 (1969),

A 373–376.

3. , Ordres faibles et localisation de zéros de polynômes, Séminaire DELANGE-PISOT-
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