CONNES'S WORK ON ZEROS OF POLYNOMIALS

Gundorph K. Kristiansen

Fjordparken 23A, DK-4000 Roskilde, Denmark

Abstract. This is a personal version of Connes's results. I have tried to complete the proofs.

Introduction

The work referred to is contained in the three papers ([1], [2], and [3]), of which [3] is the only one containing something resembling proofs.

Polynomials with all zeros outside the unit circle

This section is based on [3, page 18-01].
Let $P(x) \in \mathbb{C}[x]$ have all zeros outside the unit circle.
We consider the set of submultiplicative seminorms $z \mapsto\|z\|$ on the algebra $A=\mathbb{C}[x] / P(x)$.

Notationally we shall not distinguish between a polynomial in $\mathbb{C}[x]$ and its canonical image in A. However, it is convenient to distinguish between the scalar (i.e. the complex number) 1 and the monomial e, whose set of values equals $\{1\}$.

An obvious consequence of the submultiplicity is the fact that if there is an element $z \in A$ with $\| z \mid \neq 0$, i.e. if the seminorm is non-trivial, then $\|e\| \geq 1$.

Moreover, if the seminorm is non-trivial, its zero-set is an ideal generated by a polynomial Q, which must divide P.

Let Q have a zero α. Put $Q(x)=(x-\alpha) Q_{1}(x)$. Then

$$
0=\|Q(x)\|=\left\|(x-\alpha) Q_{1}(x)\right\|,
$$

so that

$$
|\alpha|\left\|Q_{1}(x)\right\|=\left\|x Q_{1}(x)\right\| \leq\|x\|\left\|Q_{1}(x)\right\| .
$$

Since $\left\|Q_{1}(x)\right\|>0$, we obtain $\|x\| \geq|\alpha|>1$.
A submultiplicative seminorm is defined by

$$
\begin{equation*}
\|z\|=\inf \left\{\sum_{j=0}^{n}\left|b_{j}\right| \mid z=\sum_{j=0}^{n} b_{j} x^{j}\right\} \tag{1}
\end{equation*}
$$

For the monomial x we find $\|x\| \leq 1$, which in combination with the remarks above shows that (1) is trivial.

In particular, $\|e\|=0$, and so there exists a polynomial $\sum_{j=0}^{n} a_{j} x^{j}$ which is a multiple of $P(x)$ so that $\left|1-a_{0}\right|+\sum_{j=1}^{n}\left|a_{j}\right|<1$. Thus,

$$
\begin{equation*}
\left|a_{0}\right| \geq 1-\left|1-a_{0}\right|>\sum_{j=1}^{n}\left|a_{j}\right| . \tag{2}
\end{equation*}
$$

Conversely, if $P(x)$ has a zero θ with $|\theta| \leq 1$, for every multiple $\sum_{j=0}^{n} a_{j} x^{j}$ of $P(x)$ we have

$$
-a_{0}=\sum_{j=1}^{n} a_{j} \theta^{j}
$$

implying

$$
\begin{equation*}
\left|a_{0}\right| \leq \sum_{j=1}^{n}\left|a_{j}\right|, \tag{3}
\end{equation*}
$$

making the condition that some multiple $\sum_{j=0}^{n} a_{j} x^{j}$ of $P(x)$ satisfies (2) a necessary and sufficient for $P(x)$ to have all zeros outside the unit circle.

Weak orderings of fields finite over \mathbb{Q}

Let K be a field finite over \mathbb{Q}. Its elements are algebraic numbers.
A weak partial ordering ω is defined by the corresponding set of positive numbers (also denoted by ω). This set must satisfy the following requirements (and only these):
(1) Its intersection with \mathbb{Q} does not contain the number 0 .
(2) If x and y are members of ω, so are all numbers $\lambda x+\mu y$, where λ and μ are positive rational numbers.
(3) If x and y are members of ω, so is the number $1 /(1 / x+1 / y)$.

For simplicity, the statement $x>0$ will be considered synonymous to $x \in \omega$.
Assume that we are given n numbers $\omega_{j}(j=0,1, \ldots, n-1)$ in ω with the property that their rational linear combinations span the module $L=\omega-\omega$. We shall assume that these n numbers form a subset of ω which is maximal with respect to the property of being linearly independent over \mathbb{Q}.

Any number $x \in L$ can be written $x=\sum_{j=0}^{n-1} \xi_{j} \omega_{j}$, where $\forall j: \xi_{j} \in \mathbb{Q}$.
Put $z=\sum_{j=0}^{n-1} \omega_{j}$. Then $z>0$, and for any $x \in L$ there exists a $\lambda \in \mathbb{Q}_{+}$, such that $\lambda z>x$.

We shall show that $L=z K^{\prime}$, where K^{\prime} is a subfield of K.
We consider $\omega^{\prime}=\omega / z$, which is a weak partial ordering iff ω is.
And so

$$
x \in \omega^{\prime} \Longrightarrow \frac{1}{\frac{1}{x}+\frac{1}{\lambda-x}}=x(1-x / \lambda) \in \omega^{\prime},
$$

i.e. $x^{2} \in L^{\prime}=\omega^{\prime}-\omega^{\prime}$.

Let $x \in \omega^{\prime}, y \in \omega^{\prime}$. Then

$$
\begin{equation*}
x y=\frac{1}{2}\left((x+y)^{2}-x^{2}-y^{2}\right) \in L^{\prime} . \tag{4}
\end{equation*}
$$

Hence, $x \in L^{\prime}, y \in L^{\prime} \Longrightarrow x y \in L^{\prime}$. This means that the \mathbb{Q}-module L^{\prime} is in fact a ring. Since L^{\prime} is a subring of the field K and of finite dimension over the field \mathbb{Q}, it is easy to show that L^{\prime} is itself a field (in fact, the inverse of an element $x \in L^{\prime}$ belongs to $\mathbb{Q}[x]$ and so to L^{\prime}).

We shall show that a given partial weak ordering ω of K can always be completed to a total weak ordering of K.

However, it follows from the above that the real problem is to complete the partial weak ordering ω^{\prime} of $L^{\prime}=K^{\prime}$ to a total weak ordering of K^{\prime}. So, in the following we shall simply remove the apostrophes and directly tackle the problem of extending the given partial ordering ω of $L=K=\mathbb{Q}[x] / p$, where $p \in \mathbb{Q}[x]$ is irreducible.

Let the zeros of p be $\theta_{j}(j=1, \ldots, r+2 c)$, where θ_{j} is real for $j=1, \ldots, r$ and has positive imaginary part for $j=r+1, \ldots, r+c$, while $\theta_{r+c+k}=\widetilde{\theta}_{r+k}$ for $k=1, \ldots, c$.

Each element q of K can be written as a polynomial of degree at most $n-1$, where $n=r+2 c$ is the degree of p. Each isomorphism ϕ of K into \mathbb{C} has the form $\phi=\phi_{j}$, where $\phi_{j}(q)=q\left(\theta_{j}\right)$ for some $j \in\{1, \ldots, n\}$.

It is practical to collect these isomorphisms into a single isomorphism ϕ of K into the ring $A=\mathbb{R}^{r} \times \mathbb{C}^{c}$. Here we have used the fact that q is a real polynomial, so that only the $r+c$ first isomorphisms are needed to characterize q.

Then q can be found by means of the Lagrange interpolation formula, for instance, calculating $q\left(\theta_{r+c+k}\right)$ as the complex conjugate of $q\left(\theta_{r+k}\right)$ for $k=1, \ldots, c$.

This also shows that $\phi(K)$ is dense in A. In fact, to each point in A we can find a polynomial $q_{0} \in \mathbb{R}[x]$ of degree at most $n-1$ corresponding to it. But q_{0} can be arbitrarily well approximated by polynomials in $\mathbb{Q}[x]$.

The set $\phi(\omega)$ gives a partial ordering of A.
Consider the images $\omega_{j}=\phi_{j}(\omega)$ for $j=1, \ldots, r+c$.
In the real case $(j \leq r)$ the closure of ω_{j} must be either one of the semiaxes $[0, \pm \infty)$ or the whole of \mathbb{R}; this follows directly from condition (2) for ω.

In the non-real case $(r+1 \leq j \leq r+c)$ the angle of the smallest closed cone containing ω_{j} either is at most π, or is equal to 2π, because of condition (2).

So a natural first step towards a total ordering of K is to replace $\phi(\omega)$ by the interior ω_{A} of its completion in A. This is again a partial weak ordering of A. Note, in particular, that although 0 belongs to the completion of $\phi(\omega)$ in A, it is a boundary point and so does not belong to ω_{A}.

More information about ω_{A} gives Connes's
Lemma ([3, p. 18-08]). The partial ordering ω_{A} does not depend on those coordinates for which the projection of ω has as closure the whole field \mathbb{C} or \mathbb{R}.
Proof. Assume, for definiteness, that ω_{A} contains the points x_{1} with first coordinate ξ and x_{2} with first coordinate $-\xi$, chosen such that the other coordinates of both x_{1}, x_{2} and $x_{1}+x_{2}$ are non-zero. Then ω_{A} contains also the limit for $\epsilon \rightarrow 0$ of the expression

$$
(2 \epsilon) /\left((1+\epsilon) / x_{1}+(1-\epsilon) / x_{2}\right),
$$

which is the point with first coordinate ξ and the other coordinates equal to 0 . In fact, all points with the first coordinate a real multiple of ξ and the $(n-1)$-tuple of the remaining coordinates a non-negative linear combination of those of x_{1} and x_{2} are contained in ω_{A}.

Consider the case where there is no value of j, for which ω_{j} is restricted to a semiaxis or a halfplane. Then the closure of $\phi(\omega)$ is the whole of A, in particular, 0 should be an interior point in this closure and so belong to ω_{A}, which is impossible.

Thus there is at least one number j, for which $\bar{\omega}$ is not the whole field. Let $j=j_{0}$ be such a number.

There are three cases:

1) If $j_{0} \leq r$, we have $\overline{\omega_{j_{0}}}$ equal to either $[0,+\infty)$ or $[0,-\infty)$, and we can simply extend ω_{A} by replacing it with the product $\mathbb{R}^{j_{0}-1} \mathbb{R}_{+} \mathbb{R}^{r-j_{0}} \mathbb{C}^{c}$ or the one obtained by replacing \mathbb{R}_{+}with \mathbb{R}_{-}in this expression.

If $j_{0}>r$, we first determine an open halfplane Π containing the interior of $\overline{\omega_{j_{0}}}$. Then we introduce two real rectangular coordinates $x_{j_{0}}$ and $y_{j_{0}}$, such that Π equals $x_{j_{0}}>0$. If now
2) $\omega_{j_{0}}$ has points on both of the $y_{j_{0}}$-semiaxes, the lemma shows that ω_{A} does not depend on $y_{j_{0}}$, and we just extend ω_{A} by replacing it with the product

$$
\mathbb{R}^{r} \mathbb{C}^{j_{0}-r-1} \Pi \mathbb{C}^{r+c-j_{0}}
$$

The same applies if $\omega_{j_{0}}$ has points on none of the $y_{j_{0}}$-semiaxes.
If, however,
3) $\omega_{j_{0}}$ has points on at most one of the semiaxes from 0 to ∞ bounding Π, the product $\mathbb{R}^{r} \mathbb{C}^{j_{0}-r-1} \Pi \mathbb{C}^{r+c-j_{0}}$ does not suffice as extension of ω_{A}. We will have to add a set containing the remaining points of ω_{A}. To do this we consider the other coordinates of those points of ω_{A}, for which coordinate number j_{0} belongs to the relevant semiaxis $\mathbb{R}_{ \pm}$. A new coordinate j_{1} must receive the same treatment as j_{0} above.

We find that the total weak orderings ω continuing the given one are lexographical corresponding to some ordering of k (say) of the non-real coordinates, according to the following scheme:

An element $x \in K$ is positive iff one of the following possibilities occur,

1) for some $m<k$: $x_{j_{0}}(x)=\cdots=x_{j_{m-1}}(x)=0, x_{j_{m}}(x)>0$,
2) $x_{j_{0}}(x)=\cdots=x_{j_{k}}(x)=0, \pm x_{j_{k+1}}(x)>0$,
where the coordinate with number j_{k+1} is real, and the appropriate sign is taken.

Applications of weak ordering

See [3, pages 18-07 and 18-08].
Let x_{1}, \ldots, x_{n} be variables. Define $\Omega\left(x_{1}, \ldots, x_{n}\right)$ as the set of rational functions obtained from x_{1}, \ldots, x_{n} by applying the procedures (2) and (3) for positive sets a finite number of times.

Let u_{1}, \ldots, u_{n} be algebraic numbers. They can be represented by polynomials in some field $K=\mathbb{Q}[x] / q$, where $q \in \mathbb{Q}[x]$ is irreducible.

The conjugate systems to $\left(u_{1}, \ldots, u_{n}\right)$ will be denoted by $\left(u_{1}^{(p)}, \ldots, u_{n}^{(p)}\right)$.
Theorem 1. A necessary and sufficient condition for the existence of a function $F \in \Omega\left(x_{1}, \ldots, x_{n}\right)$ such that $F\left(u_{1}, \ldots, u_{n}\right)=0$ is that, for every $p, 0$ belongs to the (real) convex hull of $u_{1}^{(p)}, \ldots, u_{n}^{(p)}$.
Proof. If $F\left(u_{1}, \ldots, u_{n}\right)=0$, then also, for all $p, F\left(u_{1}^{(p)}, \ldots, u_{n}^{(p)}\right)=0$, and so 0 belongs to the convex hull of $u_{1}^{(p)}, \ldots, u_{n}^{(p)}$.

Conversely, assume that for all $F \in \Omega\left(x_{1}, \ldots, x_{n}\right)$ we have $F\left(u_{1}, \ldots, u_{n}\right) \neq 0$, and let ω be a set containing u_{1}, \ldots, u_{n}. Then $F\left(u_{1}, \ldots, u_{n}\right) \in \omega$ for all $F \in$ $\Omega\left(x_{1}, \ldots, x_{n}\right)$. But then, according to our assumption, ω satisfies all conditions necessary to qualify it as a weak partial ordering. And so, as we have seen, there is a p for which ω_{p} is contained in an open halfplane. And then 0 does not belong to the convex hull of the $u_{1}^{(p)}, \ldots, u_{n}^{(p)}$, q.e.d.

Examples:

1) A polynomial in $\mathbb{Q}[x]$ whose zeros are all real and negative divides a rational function $F(x, 1)$, where $F \in \Omega\left(x_{1}, x_{2}\right)$.
2) A polynomial in $\mathbb{Q}[x]$ whose zeros all have negative real part divides a rational function $F(x, 1 / x, 1)$, where $F \in \Omega\left(x_{1}, x_{2}, x_{3}\right)$.
3) Let P_{1}, \ldots, P_{k} be points in \mathbb{C}, algebraically members of the field $\kappa=\mathbb{Q}[i]$ and geometrically corners in a convex polygon $P_{1} \ldots P_{k}$.

Then a complex number z is a zero of a polynomial in $\kappa[x]$ with all zeros in the given polygon iff there is a function $F \in \Omega\left(x_{1}, \ldots, x_{k}\right)$ such that $F\left(z-P_{1}, \ldots, z-\right.$ $\left.P_{k}\right)=0$.

In fact, a conjugate of the k-tuple $\left(z-P_{1}, \ldots, z-P_{k}\right)$ either has the form $\left(z_{j}-P_{1}, \ldots, z_{j}-P_{k}\right)$ (where z_{j} is another zero of the equation satisfied by z) or the form $\left(\tilde{z}_{j}-\tilde{P}_{1}, \ldots, \tilde{z}_{j}-\tilde{P}_{k}\right)$.
4) Assume now that u_{1}, \ldots, u_{n} all belong to the same open halfplane, but that this is not true for any other $u_{1}^{(p)}, \ldots, u_{n}^{(p)}$ except $\tilde{u}_{1}, \ldots, \tilde{u}_{n}$.

Let γ denote the smallest closed cone containing the origin and u_{1}, \ldots, u_{n}.
Let $G\left(u_{1}, \ldots, u_{n}\right)$ be a rational homogeneous function of degree 1 with rational coefficients and with its value contained in γ. Then $G\left(u_{1}, \ldots, u_{n}\right) / u_{1}$ is a member of the field $\omega-\omega$, where ω is an arbitrary weak partial ordering containing $1, u_{2} / u_{1}, \ldots, u_{n} / u_{1}$, in fact even a member of ω (note that because of our assumptions about $u_{1}^{(p)}, \ldots, u_{n}^{(p)}$ it is not necessary to consider the other projections). Defining ω as the set of values $F\left(1, u_{2} / u_{1}, \ldots, u_{n} / u_{1}\right)$ obtained by letting $F\left(x_{1}, \ldots, x_{n}\right)$ run through $\Omega\left(x_{1}, \ldots, x_{n}\right)$, we find that there is a function $F\left(x_{1}, \ldots, x_{n}\right)$ in $\Omega\left(x_{1}, \ldots, x_{n}\right)$, such that $G\left(u_{1}, \ldots, u_{n}\right)=F\left(u_{1}, \ldots, u_{n}\right)$.

Example:
If θ is a positive algebraic number whose conjugates all have negative real part, we can put $\left(u_{1}, u_{2}, u_{3}\right)=(\theta, 1,1 / \theta)$ and use the result just proved: We can choose positive rational numbers λ_{1} and λ_{2}, such that the algebraic number u, defined by

$$
\theta=\lambda_{1} \times 1+\frac{1}{\lambda_{2} \times 1+1 / u}
$$

is positive. Then u is a function of the type G above, and as u is positive, we conclude that there is a function $F \in \Omega\left(x_{1}, x_{2}, x_{3}\right)$ such that $u=F(\theta, 1,1 / \theta)$. Thus,

$$
\begin{equation*}
\theta=\lambda_{1}+\frac{1}{\lambda_{2}+1 / F(\theta, 1,1 / \theta)} \tag{12}
\end{equation*}
$$

The case where θ is a positive algebraic number whose conjugates all are negative real can be treated similarly: We have $\theta=F(\theta, 1)$, where $F \in \Omega\left(x_{1}, x_{2}\right)$.

Rational polynomials
 WITH EXACTLY ONE ZERO INSIDE THE UNIT CIRCLE

Theorem 2. A necessary and sufficient condition for θ to be an algebraic number with $|\theta|<1$ and with all conjugates outside the unit circle is that there are rational numbers a_{0}, \ldots, a_{n} such that $\sum_{j=0}^{n}\left|a_{j}\right|<1$ and

$$
\theta=\sum_{j=0}^{n} a_{j} \theta^{j}
$$

One may choose the a_{j} such that $a_{1}=0$ and only p of them are different from 0 . Here p is the number of conjugates of θ.

Proof. The sufficiency is obvious (Rouché).
To prove the necessity, let $q \in \mathbb{Q}[x]$ be the irreducible polynomial of which θ is a zero.

As above we consider the field $K=\mathbb{Q}[x] / q$ and its isomorphisms into \mathbb{C}.
As in the first section (but with $\mathbb{C}[x]$ replaced with $\mathbb{Q}[x]$) we can define the seminorm (1).

As in the second section we consider the isomorphism ϕ of K into the ring $A=\mathbb{R}^{r} \times \mathbb{C}^{c}$, where r is the number of real zeros and c the number of zeros with positive imaginary part. We have $r+2 c=p+1$.

But clearly the isomorphism ϕ is the restriction of a homomorphism of $\mathbb{C}[x] / q$ onto A, defined nominally in the same way. Similarly for the seminorm (1) (where now n is an unlimited positive integral parameter), since \mathbb{Q} is dense in \mathbb{C}.

We can consider the extended seminorm as a seminorm on A. The set of elements of A on which the seminorm vanishes is an ideal and so is characterized by a set of coordinates vanishing. To find out what this set is, we consider the unit ball $B \subset K$. A linear form vanishes on all elements with seminorm zero iff the image of B is bounded. Thus the seminorm vanishes on the coordinate corresponding to a particular zero of q iff this zero has absolute value less than or equal to 1 . But this means that the seminorm does not depend on the other coordinates. In the case we consider, we must have $\|p\|=k|p(\theta)|$. Since $\|e\|=1$, we have $k=1$. Thus $\|x\|=|\theta|<1$, and the theorem follows.

That p non-zero coefficients suffice, is a consequence of Carathéodory's Theorem and a limit-argument, and it is easily checked that we can choose $a_{1}=0$.

References

1. A. Connes, Sur une généralisation de la notion de corps ordonné, C. R. Acad. Sc. Paris 269 (1969), A 337-340.
2. \qquad , Ordres faibles et localisation de zéros de polynomes, C. R. Acad. Sc. Paris 269 (1969), A 373-376.
3. \qquad , Ordres faibles et localisation de zéros de polynômes, Séminaire DELANGE-PISOTPOITOU 12e année (1970/71), 18-01-18-11.

Fjordparken 23A, DK-4000 Roskilde, Danmark
E-mail address: gkkristi@post6.tele.dk

