NON UNIT DISTANCE GRAPHS

Gundorph K. Kristiansen

October 12, 2018
K_{4}.
I shall show that K_{4} can be an induced subgraph of a unit distance graph only under special circumstances.

We consider a normed topology of the plane, and we can further assume that we have a polygonal geometry, i.e. the unit circle is a polygon.

The vertices of K_{4} are denoted z_{j} with $j=1, \ldots, 4$. The unit circle must contain the points $w_{j, k}=z_{j}-z_{k}$ for all $\{j, k\}$ with $j \neq k$.

Some simple conclusions can be drawn with respect to the numbers z_{j} in this case.

Assume that one vertex, z_{j}, belongs to the convex hull of the others. So,

$$
z_{j}=\sum_{k \neq j} c_{k} z_{k},
$$

where the numbers $c_{k}, k \neq j$, are non-negative and have sum 1 . For at least one m we have $0<c_{m}<1$.

But then

$$
\sum_{k \neq j, m} c_{k}\left(z_{k}-z_{m}\right) / \sum_{k \neq j, m} c_{k}=\left(z_{j}-z_{m}\right) /\left(1-c_{m}\right) .
$$

Taking norms we obtain

$$
1 \geq 1 /\left(1-c_{m}\right),
$$

a contradiction.
Next we shall use the fact that, for arbitrary $w \in \mathbb{C}$, the set $D_{w}=\{z \in \mathbb{C} \mid\|z-w\| \leq 1\}$ is convex.

We will need to use, in addition to the polygonal topology, also the usual topology of the complex plane. In the former, the length of a vector z is denoted by $\|z\|$, in the latter it is denoted by $|z|$.

If two vectors w_{1} and w_{2} are parallel, then $\left\|w_{1}\right\|=\left\|w_{2}\right\|$ implies $\left|w_{1}\right|=\left|w_{2}\right|$.
For notational simplicity the suffixes of vertices are understood modulo 4.
As follows from the results above, the convex hull of the four points $z_{1}, z_{2}, z_{3}, z_{4}$ has these four points as extreme points.

We may rename the points z_{j} and define the argument function such that for all $j \in[2,4]$ we have

$$
\arg w_{j, j-1}<\arg w_{j+1, j}<\arg w_{2,1}+2 \pi .
$$

If we are still not satisfied, we may rename the points while maintaining their relative order (in other words, circular shifts are allowed).

With this in mind, the results obtained for a particular point (for instance z_{1}) are valid in general.

We introduce the auxiliary points $\zeta_{1}=z_{1}+z_{3}-z_{4}$ and $\zeta_{2}=z_{2}+z_{4}-z_{3}$.
Assume first that the line through z_{1} and ζ_{1} intersects the open interval $\left(z_{2}, z_{3}\right)$ (in a point w_{1}, say).

If $\zeta_{1} \in\left(z_{1}, w_{1}\right)$, we get a contradiction since $D_{z_{1}}$ is convex.
If $w_{1} \in\left(z_{1}, \zeta_{1}\right)$ we also get a contradiction, since now $z_{1} \in D_{z_{2}}$.
Thus, $\zeta_{1}=w_{1}$.
In the remaining case, the line through z_{2} and ζ_{2} intersects the open interval $\left(z_{1}, z_{4}\right)$ (in a point w_{2}, say).

The argument proceeds as above, but with z_{1} and z_{2} interchanged.
We conclude that $\zeta_{2}=w_{2}$.
In both cases we conclude that $z_{1}-z_{4}$ and $z_{2}-z_{3}$ have the same direction. Since they also have the same length, they must be equal.

Let now ζ_{1} be an arbitrary point with distance 1 from z_{1}.
Assume that the interval $\left(z_{1}, \zeta_{1}\right)$ contains a point of $\left(z_{2}, z_{3}\right)$.
Let now $\zeta_{2}=z_{2}+z_{1}-\zeta_{1}$.
Because of the convexity of $D_{z_{2}}$ we get a contradiction.
Thus, ζ_{1} must belong to $\left(z_{2}, z_{3}\right)$.
We conclude that the geometry is quadrangular.

Various sub graphs.

We continue our search for forbidden induced subgraphs in non-quadrangular geometries.

Let n be an integer greater then 3 .
Let C_{n} ba a cycle with n edges.
Let q_{n} be a minimal integer with the property that the union of C_{n} with q_{n} particular chords cannot be an induced subgraph in a unit distance graph (unless the norm is further restricted).

We have essentially proved that $q_{4}=2$. We shall prove that $q_{5}=q_{6}=3$, and that $q_{n}=4$ for $n \geq 7$.
$n=5$.
Without loss of generality we let $C_{5}=z_{1} z_{2} z_{3} z_{4} z_{5} z_{1}$ with chords $z_{1} z_{3}, z_{1} z_{4}$, and $z_{2} z_{5}$.

We may assume that the unit distance graph G contains an induced triangle $z_{1} z_{2} z_{3} z_{1}$ in and, in fact, the set V of all points $m_{1} z_{1}+m_{2} z_{2}+m_{3} z_{3}$, where the integers m_{1}, m_{2}, m_{3} have sum 1. Note that
$m_{1} z_{1}+m_{2} z_{2}+m_{3} z_{3}=z_{1}+m_{2}\left(z_{2}-z_{1}\right)+m_{3}\left(z_{3}-z_{1}\right)$,
so that each point in V can be obtained by starting from z_{1} and proceeding by edges of length 1 .

We shall try to locate z_{4}.
We first consider the interior of the convex hull of the neighbours of z_{1} in V. Clearly z_{4} cannot belong to this set.

Similarly for z_{3}.
Next, let w be an arbitrary neighbour of z_{1} in V, and let w_{1} and w_{2} be the two common neighbours of z_{1} and w in V.

Assume that z_{4} belonged to the angular space between the two half-lines through w and directed away from w_{1} and w_{2}, respectively.

Then the path $w_{1} z_{4} w_{2}$ consists of points at distance at least 1 from z_{1}. Now the line from z_{1} through w intersects this path at a point w_{3} different from w, which should then have a distance from z_{1} strictly less than 1 , and we have a contradiction.

We can repeat this argument for neighbours of z_{3} in V.
A preliminary result:
Four particular angular spaces combine to two half-spaces, which results in the possible positions of z_{4} to be restricted to a strip of breadth 2 parallel to the edge $z_{1} z_{3}$.

Finally, the positions allowed for z_{4} restrict to the union of the two intervals $\left[2 z_{1}-z_{2}, 2 z_{3}-z_{2}\right]$ and $\left[z_{1}+z_{2}-z_{3}, z_{2}+z_{3}-z_{1}\right]$.

Similarly, we find that z_{5} must belong to the union of the two intervals
$\left[2 z_{1}-z_{3}, 2 z_{2}-z_{3}\right]$ and $\left[z_{1}+z_{3}-z_{2}, z_{2}+z_{3}-z_{1}\right]$.
Assume first that $z_{4} \in\left(2 z_{1}-z_{2}, z_{1}+z_{3}-z_{2}\right)$.
Then the unit circle with centre z_{1} has three points in common with the interval [$\left.2 z_{1}-z_{2}, z_{1}+z_{3}-z_{2}\right]$ and so must contain it.

Then it also contains the interval $\left[z_{1}+z_{2}-z_{3}, z_{2}\right]$.
Further it follows that the unit circle with centre z_{3} contains the intervals
$\left[z_{2}, z_{2}+z_{3}-z_{1}\right]$ and $\left[z_{1}+z_{3}-z_{2}, 2 z_{3}-z_{2}\right]$. There are similar results obtained by translation.

Similar arguments can be carried through for the z_{5}-intervals.
We will have to consider all possible combinations.
We first assume that z_{4} belongs to one of the four open intervals considered above.

If $z_{5} \in\left(z_{1}+z_{2}-z_{3}, 2 z_{2}-z_{3}\right]$, the interval $\left(z_{1}, z_{5}\right]$ intersects the interval
$\left(z_{1}+z_{2}-z_{3}, z_{2}\right)$ in a point with distance 1 from z_{1}, but z_{5} also has distance 1 from z_{1}, and we have a contradiction.

A similar argument is valid if $z_{5} \in\left[z_{1}+z_{3}-z_{2}, z_{3}\right)$.
We have a similar situation, if z_{5} belongs to one of the relevant four open intervals:

We can then exclude the possibilities
$z_{4} \in\left[z_{1}+z_{2}-z_{3}, z_{2}\right)$ and $z_{4} \in\left(z_{1}+z_{3}-z_{2}, 2 z_{3}-z_{2}\right]$.
Next we consider simultaneous localizations of z_{4} and z_{5} :
Let $z_{4} \in\left(z_{2}, z_{2}+z_{3}-z_{1}\right)$, and $z_{5} \in\left(z_{3}, z_{2}+z_{3}-z_{1}\right)$. Then the unit circle with centre in z_{4} goes through z_{3} and $z_{4}+z_{3}-z_{1}$, so that its interior contains z_{5}, a contradiction.

Let $z_{4} \in\left(z_{2}, z_{2}+z_{3}-z_{1}\right)$, and $z_{5} \in\left(2 z_{1}-z_{3}, z_{1}+z_{2}-z_{3}\right)$.
Then the unit circle with centre z_{5} contains the three collinear points z_{2}, z_{1}, and $z_{5}+z_{3}-z_{1}$ and so the whole interval $\left[z_{1}, z_{3}\right]$.

But then the interval $\left(z_{5}, z_{4}\right)$, which has length 1 , intersects $\left(z_{1}, z_{2}\right)$ at a point at distance 1 from z_{5}, a contradiction.

Let $z_{4} \in\left(2 z_{1}-z_{2}, z_{1}+z_{3}-z_{2}\right)$, and $z_{5} \in\left(z_{3}, z_{2}+z_{3}-z_{1}\right)$.
Then the unit circle with centre z_{4} contains $\left[z_{1}, z_{2}\right)$, which is incompatible with $\left\|z_{4}-z_{5}\right\|$ being 1.

Let $z_{4} \in\left(2 z_{1}-z_{2}, z_{1}+z_{3}-z_{2}\right)$, and $z_{5} \in\left(2 z_{1}-z_{3}, z_{1}+z_{2}-z_{3}\right)$.
Then the unit circle with centre z_{5} contains z_{2} and z_{4}, so that any point on $\left(z_{2} . z_{4}\right)$, in particular the point of intersection between $\left(z_{5}, z_{1}\right)$ and $\left(z_{2}, z_{4}\right)$, has distance at most 1 from z_{5}, contradicting $\left\|z_{1}-z_{5}\right\|=1$.

Finally, we must consider the possibility that z_{4} and z_{5} might belong to V.
Since the geometry is not quadrangular, we are left with the case $z_{4}=z_{1}+z_{3}-z_{2}$ and $z_{5}=z_{1}+z_{2}-z_{3}$. But then the distance between z_{4} and z_{5} would be 2 and not 1 .

This concludes the proof of the conjecture for $n=5$.
$n \geq 6$.
We shall prove that $q_{n} \leq 4$.
Let C_{n} be the union of the edges $z_{j} z_{j+1}(j=1,2, \ldots n)$.
If we choose the four chords $z_{1} z_{3}, z_{1} z_{n-1}, z_{3} z_{n-1}$, and $z_{2} z_{n}$, we evidently have an induced subgraph as the one we showed to be impossible in the case $n=5$.

In the sequel, we shall also use the following simple observation;
Let a_{1} and a_{2} be two points with distance 1 . Let a_{3} be a point with distance 1 from both of these two points. Put $a_{4}=a_{1}+a_{2}-a_{3}$. Let a_{5} be a further point with distance 1 from a_{1} and a_{2}. Then the unit circle has a side parallel to (a_{1}, a_{2}). In this case, the geometry would have to be quadrangular, a situation we have excluded.
$n=6$.
We choose the three chords $z_{1} z_{3}, z_{1} z_{5}$, and $z_{2} z_{6}$.
If the unit circle has no side parallel to $z_{1} z_{2}$, we have $z_{6}=z_{1}+z_{2}-z_{3}$.
If the unit circle has no side parallel to $z_{2} z_{3}$, we have $z_{5}=z_{1}+z_{6}-z_{2}$, and so $z_{5}-z_{1}=z_{1}-z_{3}$.

But z_{4} also has distance 1 from z_{3} and z_{5}. So the unit circles with centres in z_{3} and z_{5} both contain z_{1} and z_{4}, and so also the interval $\left[z_{1}, z_{4}\right]$, which is thus parallel to a side in the unit circle, q.e.d.
$n \geq 7$.
We must show that $q_{n}>3$.
Thus, for any choice of three chords, we must be able to find a unit distance graph, containing the union G_{n} of the cycle C_{n} with these chords as an induced subgraph.

There are several sub cases:

1) The three chords have a common end point (z_{1}, say). Then we must find a path from z_{2} to z_{n} containing the other end points of the chords.

These end points divide the mentioned $n-2$-path in four sub paths, at least one of these having length at least two. Such a sub path can easily be constructed without posing any restriction the other sub paths. The remaining sub paths each contains a single edge. Let $\left[z_{j}, z_{j+1}\right]$ (with j maximal) be such an edge. Assume that $\left[z_{j-1}, z_{j}\right]$ is an edge of the same type. Then, according to the observation above, we must have $z j-1=z_{1}+z_{j}-z_{j+1}$. This may continue for at most one more interval, so that at most the points z_{j-1}, and z_{j-2} are determined by z_{j} and z_{j+1}.
2) The three chords form a triangle. Their end points divide C_{n} into three paths, each of length at least two. We easily supply the necessary vertices.
3) To construct worst case scenarios we must be able to use the above observation, which again requires a situation equivalent to the following:

The two points z_{n} and z_{p} (with $2<p<n$) both have distances one from z_{1} and z_{2}, and so we have $z_{p}=z_{1}+z_{2}-z_{n}$. There are three sub cases;

3a) $p=n-1$. But this would make the geometry quadrangular, contrary to assumption.

3b) $3<p<n-1$. We easily locate the vertices on the two paths $\left[z_{3}, z_{p-1}\right]$ and $\left[z_{p+1}, z_{n-1}\right]$.

3c) $p=3$. We must specify the third chord. This should be done in such a way that use of the observation above results in a further determination of a vertex
as dependent on z_{1}, z_{2}, and z_{n}. There are two possibilities:
$3 \mathrm{c} 1)$ The chord is $z_{2} z_{4}$. We get $z_{4}=z_{2}+z_{3}-z_{1}=2 z_{2}-z_{n}$. The remaining vertices on the path $\left[z_{5}, z_{n-1}\right]$ can easily be found.
$3 \mathrm{c} 2)$ The chord is $z_{1} z_{n-1}$. Then $z_{n-1}=z_{1}-z_{2}+z_{n}$. The vertices on the path $\left[z_{4}, z_{n-2}\right]$ are easy.

QED

The extended Moser graph.

Let G be the union of the Moser graph and an extra vertex w with edges connecting w with each vertex in the Moser graph. The graph G is not four colourable, and we shall find out, whether G can be an induced subgraph in a unit distance graph in a suitable topology.

However, the induced subgraph of G containing w and an arbitrary triangle of the Moser graph is a K_{4}. So the geometry must be quadrangular, and any unit distance graph is four colourable.

We cannot extend this kind of argument by replacing the Moser graph by an arbitrary four-chromatic graph, since, as follows from a well known theorem, proved by Blanche Descartes (actually William T. Tutte), there are four-chromatic graphs not containing any triangle.

On non-quadrangular geometries.

If G is four-chromatic, it cannot be perfect.
Consider the chromatic polynomial

$$
P(G)(x)=\sum_{j=0}^{n}(-1)^{n-j} c_{j}(G) x^{j}
$$

where $n=|G|$ is the number of vertices of G, and the coefficients $c_{j}(G)$ are nonnegative.

To determine the coefficients we use the following relationship

$$
P(G)=P(G / E)-P(G \backslash E)
$$

where E is an arbitrary edge in G, the graphs G / E and $G \backslash E$ are obtained from G by removing E, in the first case identifying its endpoints.

Let $\|G\|$ be the number of edges in the graph G.
Then we shall usually have $\|G / E\|=\|G\|-1$, except when E is part of a triangle contained in G. In this case usually $\|G / E\|=\|G\|-2$.

In fact, if E is part of more than one triangle, $\|G / E\|$ may be even smaller.
In the case where G is a unit distance graph, we cannot be sure that this property is inherited by G / E.

But in any case, we have the recursion,

$$
c_{j}(G)=c_{j}(G / E)+c_{j}(G \backslash E),
$$

valid for $j=0,1, \ldots, n-1$. We have

$$
c_{n}(G)=c_{n}(G / E)=1
$$

and

$$
c_{n-1}(G)=1+c_{n-1}(G \backslash E)=\|G\|
$$

Examples:
Notation: Let G_{1} and G_{2} be graphs with $\left|G_{1} \cap G_{2}\right|=1$. We then denote $G_{1} \cup G_{2}$ by $G_{1} \star G_{2}$.

$$
\begin{aligned}
P\left(T_{n}\right)(x) & =x(x-1)^{n-1} . \\
P\left(C_{n}\right)(x) & =(x-1)^{n}+(-1)^{n}(x-1) . \\
P\left(T_{n} \star C_{m}\right)(x) & \left.=(x-1)^{n}\left((x-1)^{m-1}+(-1)^{m}\right)\right) . \\
P\left(C_{n} \star C_{m}\right)(x) & \left.=\left((x-1)^{n-1}+\left(-1^{n}\right)\right)\left((x-1)^{m-1}+(-1)^{m}\right)\right)(x-1)^{2} / x .
\end{aligned}
$$

The natural next step is to investigate the unit distance graphs G containing edges E such that there is an isomorphism between G / E and a unit distance graph.

