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K4.
I shall show that K4 can be an induced subgraph of a unit distance graph only

under special circumstances.
We consider a normed topology of the plane, and we can further assume that we

have a polygonal geometry, i.e. the unit circle is a polygon.
The vertices of K4 are denoted zj with j = 1, . . . , 4. The unit circle must contain

the points wj,k = zj − zk for all {j, k} with j 6= k.
Some simple conclusions can be drawn with respect to the numbers zj in this

case.
Assume that one vertex, zj , belongs to the convex hull of the others. So,

zj =
∑
k 6=j

ckzk,

where the numbers ck, k 6= j, are non-negative and have sum 1. For at least one m
we have 0 < cm < 1.

But then ∑
k 6=j,m

ck(zk − zm)/
∑

k 6=j,m

ck = (zj − zm)/(1− cm).

Taking norms we obtain
1 ≥ 1/(1− cm),

a contradiction.
Next we shall use the fact that, for arbitrary w ∈ C, the set

Dw = {z ∈ C | ‖z − w‖ ≤ 1} is convex.
We will need to use, in addition to the polygonal topology, also the usual topology

of the complex plane. In the former, the length of a vector z is denoted by ‖z‖, in
the latter it is denoted by |z|.

If two vectors w1 and w2 are parallel, then ‖w1‖ = ‖w2‖ implies |w1| = |w2|.
For notational simplicity the suffixes of vertices are understood modulo 4.
As follows from the results above, the convex hull of the four points z1, z2, z3, z4

has these four points as extreme points.
We may rename the points zj and define the argument function such that for all

j ∈ [2, 4] we have

arg wj,j−1 < arg wj+1,j < arg w2,1 + 2π.
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If we are still not satisfied, we may rename the points while maintaining their
relative order (in other words, circular shifts are allowed).

With this in mind, the results obtained for a particular point (for instance z1)
are valid in general.

We introduce the auxiliary points ζ1 = z1 + z3 − z4 and ζ2 = z2 + z4 − z3.
Assume first that the line through z1 and ζ1 intersects the open interval (z2, z3)

(in a point w1, say).
If ζ1 ∈ (z1, w1), we get a contradiction since Dz1 is convex.
If w1 ∈ (z1, ζ1) we also get a contradiction, since now z1 ∈ Dz2 .
Thus, ζ1 = w1.
In the remaining case, the line through z2 and ζ2 intersects the open interval

(z1, z4) (in a point w2, say).
The argument proceeds as above, but with z1 and z2 interchanged.
We conclude that ζ2 = w2.
In both cases we conclude that z1−z4 and z2−z3 have the same direction. Since

they also have the same length, they must be equal.
Let now ζ1 be an arbitrary point with distance 1 from z1.
Assume that the interval (z1, ζ1) contains a point of (z2, z3).
Let now ζ2 = z2 + z1 − ζ1.
Because of the convexity of Dz2 we get a contradiction.
Thus, ζ1 must belong to (z2, z3).
We conclude that the geometry is quadrangular.

Various sub graphs.
We continue our search for forbidden induced subgraphs in non-quadrangular

geometries.
Let n be an integer greater then 3.
Let Cn ba a cycle with n edges.
Let qn be a minimal integer with the property that the union of Cn with qn

particular chords cannot be an induced subgraph in a unit distance graph (unless
the norm is further restricted).

We have essentially proved that q4 = 2. We shall prove that q5 = q6 = 3, and
that qn = 4 for n ≥ 7.

n = 5.
Without loss of generality we let C5 = z1z2z3z4z5z1 with chords z1z3, z1z4, and

z2z5.
We may assume that the unit distance graph G contains an induced triangle

z1z2z3z1 in and, in fact, the set V of all points m1z1 + m2z2 + m3z3, where the
integers m1, m2, m3 have sum 1. Note that

m1z1 + m2z2 + m3z3 = z1 + m2(z2 − z1) + m3(z3 − z1),
so that each point in V can be obtained by starting from z1 and proceeding by

edges of length 1.
We shall try to locate z4.
We first consider the interior of the convex hull of the neighbours of z1 in V .

Clearly z4 cannot belong to this set.
Similarly for z3.
Next, let w be an arbitrary neighbour of z1 in V , and let w1 and w2 be the two

common neighbours of z1 and w in V .
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Assume that z4 belonged to the angular space between the two half-lines through
w and directed away from w1 and w2, respectively.

Then the path w1z4w2 consists of points at distance at least 1 from z1. Now the
line from z1 through w intersects this path at a point w3 different from w, which
should then have a distance from z1 strictly less than 1, and we have a contradiction.

We can repeat this argument for neighbours of z3 in V .
A preliminary result:
Four particular angular spaces combine to two half-spaces, which results in the

possible positions of z4 to be restricted to a strip of breadth 2 parallel to the edge
z1z3.

Finally, the positions allowed for z4 restrict to the union of the two intervals
[2z1 − z2, 2z3 − z2] and [z1 + z2 − z3, z2 + z3 − z1].

Similarly, we find that z5 must belong to the union of the two intervals
[2z1 − z3, 2z2 − z3] and [z1 + z3 − z2, z2 + z3 − z1].
Assume first that z4 ∈ (2z1 − z2, z1 + z3 − z2).
Then the unit circle with centre z1 has three points in common with the interval

[2z1 − z2, z1 + z3 − z2] and so must contain it.
Then it also contains the interval [z1 + z2 − z3, z2].
Further it follows that the unit circle with centre z3 contains the intervals
[z2, z2 + z3 − z1] and [z1 + z3 − z2, 2z3 − z2]. There are similar results obtained

by translation.
Similar arguments can be carried through for the z5-intervals.
We will have to consider all possible combinations.
We first assume that z4 belongs to one of the four open intervals considered

above.
If z5 ∈ (z1 + z2 − z3, 2z2 − z3], the interval (z1, z5] intersects the interval
(z1 + z2 − z3, z2) in a point with distance 1 from z1, but z5 also has distance 1

from z1, and we have a contradiction.
A similar argument is valid if z5 ∈ [z1 + z3 − z2, z3).
We have a similar situation, if z5 belongs to one of the relevant four open inter-

vals:
We can then exclude the possibilities
z4 ∈ [z1 + z2 − z3, z2) and z4 ∈ (z1 + z3 − z2, 2z3 − z2].
Next we consider simultaneous localizations of z4 and z5:
Let z4 ∈ (z2, z2 + z3 − z1), and z5 ∈ (z3, z2 + z3 − z1). Then the unit circle with

centre in z4 goes through z3 and z4 + z3 − z1, so that its interior contains z5, a
contradiction.

Let z4 ∈ (z2, z2 + z3 − z1), and z5 ∈ (2z1 − z3, z1 + z2 − z3).
Then the unit circle with centre z5 contains the three collinear points z2, z1, and

z5 + z3 − z1 and so the whole interval [z1, z3].
But then the interval (z5, z4), which has length 1, intersects (z1, z2) at a point

at distance 1 from z5, a contradiction.
Let z4 ∈ (2z1 − z2, z1 + z3 − z2), and z5 ∈ (z3, z2 + z3 − z1).
Then the unit circle with centre z4 contains [z1, z2), which is incompatible with

‖z4 − z5‖ being 1.
Let z4 ∈ (2z1 − z2, z1 + z3 − z2), and z5 ∈ (2z1 − z3, z1 + z2 − z3).
Then the unit circle with centre z5 contains z2 and z4, so that any point on

(z2.z4), in particular the point of intersection between (z5, z1) and (z2, z4), has
distance at most 1 from z5, contradicting ‖z1 − z5‖ = 1.
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Finally, we must consider the possibility that z4 and z5 might belong to V .
Since the geometry is not quadrangular, we are left with the case z4 = z1+z3−z2

and z5 = z1 + z2 − z3. But then the distance between z4 and z5 would be 2 and
not 1.

This concludes the proof of the conjecture for n = 5.

n ≥ 6.
We shall prove that qn ≤ 4.
Let Cn be the union of the edges zjzj+1 (j = 1, 2, . . . n).
If we choose the four chords z1z3, z1zn−1, z3zn−1, and z2zn, we evidently have

an induced subgraph as the one we showed to be impossible in the case n = 5.
In the sequel, we shall also use the following simple observation;
Let a1 and a2 be two points with distance 1. Let a3 be a point with distance 1

from both of these two points. Put a4 = a1 + a2 − a3. Let a5 be a further point
with distance 1 from a1 and a2. Then the unit circle has a side parallel to (a1, a2).
In this case, the geometry would have to be quadrangular, a situation we have
excluded.

n = 6.
We choose the three chords z1z3, z1z5, and z2z6.
If the unit circle has no side parallel to z1z2, we have z6 = z1 + z2 − z3.
If the unit circle has no side parallel to z2z3, we have z5 = z1 + z6 − z2, and so

z5 − z1 = z1 − z3.
But z4 also has distance 1 from z3 and z5. So the unit circles with centres in

z3 and z5 both contain z1 and z4, and so also the interval [z1, z4], which is thus
parallel to a side in the unit circle, q.e.d.

n ≥ 7.
We must show that qn > 3.
Thus, for any choice of three chords, we must be able to find a unit distance

graph, containing the union Gn of the cycle Cn with these chords as an induced
subgraph.

There are several sub cases:
1) The three chords have a common end point (z1, say). Then we must find a

path from z2 to zn containing the other end points of the chords.
These end points divide the mentioned n − 2-path in four sub paths, at least

one of these having length at least two. Such a sub path can easily be constructed
without posing any restriction the other sub paths. The remaining sub paths each
contains a single edge. Let [zj , zj+1] (with j maximal) be such an edge. Assume
that [zj−1, zj ] is an edge of the same type. Then, according to the observation
above, we must have zj − 1 = z1 + zj − zj+1. This may continue for at most one
more interval, so that at most the points zj−1 , and zj−2 are determined by zj and
zj+1.

2) The three chords form a triangle. Their end points divide Cn into three paths,
each of length at least two. We easily supply the necessary vertices.

3) To construct worst case scenarios we must be able to use the above observation,
which again requires a situation equivalent to the following:

The two points zn and zp (with 2 < p < n) both have distances one from z1 and
z2, and so we have zp = z1 + z2 − zn. There are three sub cases;
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3a) p = n − 1. But this would make the geometry quadrangular, contrary to
assumption.

3b) 3 < p < n− 1. We easily locate the vertices on the two paths [z3, zp−1] and
[zp+1, zn−1].

3c) p = 3. We must specify the third chord. This should be done in such a way
that use of the observation above results in a further determination of a vertex

as dependent on z1, z2, and zn. There are two possibilities:
3c1) The chord is z2z4. We get z4 = z2 + z3 − z1 = 2z2 − zn. The remaining

vertices on the path [z5, zn−1] can easily be found.
3c2) The chord is z1zn−1. Then zn−1 = z1 − z2 + zn. The vertices on the path

[z4, zn−2] are easy.
QED

The extended Moser graph.
Let G be the union of the Moser graph and an extra vertex w with edges con-

necting w with each vertex in the Moser graph. The graph G is not four colourable,
and we shall find out, whether G can be an induced subgraph in a unit distance
graph in a suitable topology.

However, the induced subgraph of G containing w and an arbitrary triangle of
the Moser graph is a K4. So the geometry must be quadrangular, and any unit
distance graph is four colourable.

We cannot extend this kind of argument by replacing the Moser graph by an
arbitrary four-chromatic graph, since, as follows from a well known theorem, proved
by Blanche Descartes (actually William T. Tutte), there are four-chromatic graphs
not containing any triangle.

On non-quadrangular geometries.
If G is four-chromatic, it cannot be perfect.
Consider the chromatic polynomial

P (G)(x) =
n∑

j=0

(−1)n−jcj(G)xj ,

where n = |G| is the number of vertices of G, and the coefficients cj(G) are non-
negative.

To determine the coefficients we use the following relationship

P (G) = P (G/E)− P (G \ E),

where E is an arbitrary edge in G, the graphs G/E and G\E are obtained from
G by removing E, in the first case identifying its endpoints.

Let ‖G‖ be the number of edges in the graph G.
Then we shall usually have ‖G/E‖ = ‖G‖−1, except when E is part of a triangle

contained in G. In this case usually ‖G/E‖ = ‖G‖ − 2.
In fact, if E is part of more than one triangle, ‖G/E‖ may be even smaller.
In the case where G is a unit distance graph, we cannot be sure that this property

is inherited by G/E.
But in any case, we have the recursion,

cj(G) = cj(G/E) + cj(G \ E),
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valid for j = 0, 1, . . . , n− 1. We have

cn(G) = cn(G/E) = 1,

and
cn−1(G) = 1 + cn−1(G \ E) = ‖G‖.

.
Examples:
Notation: Let G1 and G2 be graphs with |G1∩G2| = 1. We then denote G1∪G2

by G1 ? G2.

P (Tn)(x) = x(x− 1)n−1.

P (Cn)(x) = (x− 1)n + (−1)n(x− 1).

P (Tn ? Cm)(x) = (x− 1)n((x− 1)m−1 + (−1)m)).

P (Cn ? Cm)(x) = ((x− 1)n−1 + (−1n))((x− 1)m−1 + (−1)m))(x− 1)2/x.

The natural next step is to investigate the unit distance graphs G containing
edges E such that there is an isomorphism between G/E and a unit distance graph.


